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Trajectory Calculation 
Lab 2 Lecture Notes 

Nomenclature 

t time ρ air density 
h altitude g gravitational acceleration 
V velocity, positive upwards m mass 
F total force, positive upwards CD drag coefficient 
D aerodynamic drag A drag reference area 
(̇ ) time derivative ( = d( )/dt ) i time index 

Trajectory equations 
The vertical trajectory of a rocket is described by the altitude and velocity, h(t), V (t), which 
are functions of time. These are called state variables of the rocket. Figure 1 shows plots of 
these functions for a typical ballistic trajectory. In this case, the initial values for the two 
state variables h0 and V0 are prescribed. 
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Figure 1: Time traces of altitude and velocity for a ballistic rocket trajectory. 

The trajectories are governed by Ordinary Differential Equations (ODEs) which give the 
time rate of change of each state variable. These are obtained from the definition of velocity, 
and from Newton’s 2nd Law. 

ḣ = V (1) 

V̇ = F/m (2) 

Here, F is the total force on the rocket. For the ballistic case with no thrust, F consists only 
of the gravity force and the aerodynamic drag force. 

−mg − D , if V > 0 
F = (3) 

−mg + D , if V < 0 

The two cases in (3) are required because F is defined positive up, so the drag D can subtract 
or add to F depending in the sign of V . In contrast, the gravity force contribution −mg is 
always negative. 
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A convenient way to express the drag is 

1 
D = ρV 2 CD A (4) 
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The reference area A used to define the drag coefficient CD is arbitrary, but a good choice is 
the rocket’s frontal area. Although CD in general depends on the Reynolds number, it can 
be often assumed to be constant throughout the ballistic flight. Typical values of CD vary 
from 0.1 for a well streamlined body, to 1.0 or more for an unstreamlined or bluff body. 

With the above total force and drag expressions, the governing ODEs are written as follows. 

ḣ = V (5) 

V̇ = −g − 
1 CD A 
ρV |V | (6) 

2 m 

By replacing V 2 with V |V |, the drag contribution now has the correct sign for both the 
V > 0 and V < 0 cases. 

Numerical Integration 
In the presence of drag, or CD >0, the equation system (5),(6) cannot be integrated analyt­
ically. We must therefore resort to numerical integration. 

Discretization 
Before numerically integrating equations (5) and (6), we must first discretize them. We 
replace the continuous time variable t with a time index indicated by the subscript i, so that 
the state variables h,V , are defined only at discrete times t0, t1, t2 . . . ti . . . 

t → ti 
h(t) → hi 

V (t) → Vi 
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Figure 2: Continuous time traces approximated by discrete time traces.
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The governing ODEs (5) and (6) can then be used to determine the discrete rates at each 
time level. 

ḣi = Vi (7) 

V̇i 

1 CD A 
= −g − ρVi|Vi| (8) 

2 m 

As shown in Figure 3, the rates can also be approximately related to the changes between 
two successive times. 

ḣi 

dh Δh hi+1 − hi 
= ≃ = (9) 

dt Δt ti+1 − ti 

V̇i 

dV ΔV Vi+1 − Vi 
= ≃ = (10) 

dt Δt ti+1 − ti 

Equating (7) with (9), and (8) with (10), gives the following difference equations governing 
the discrete state variables. 

hi+1 − hi 
= Vi (11) 

V
ti+1 − ti 
i+1 − Vi 1 CD A 

= −g − ρVi|Vi| (12) 
ti+1 − ti 2 m 
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Figure 3: Time rate ḣ approximated with finite difference Δh/Δt. 

Time stepping (time integration) 
Time stepping is the successive application of the difference equations (11),(12) to generate 
the sequence of state variables hi,Vi. To start the process, it is necessary to first specify 
initial conditions, just like in the continuous case. These initial conditions are simply the 
state variable values h0,V0 corresponding to the first time index i= 0. Then, given the values 
at any i, we can compute values at i+1 by rearranging equations (11) and (12). 

hi+1 = hi + Vi (ti+1 − ti) (13) 

1 CD A 
Vi+1 = Vi + −g − ρVi|Vi| (ti+1 − ti) (14) 

2 m 

Equations (13) and (14) are an example of Forward Euler Integration. 
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Figure 4: Spreadsheet for time stepping. Arrows show functional dependencies. 

Numerical implementation 
A spreadsheet provides a fairly simple means to implement the time stepping equations (13) 
and (14). Such a spreadsheet program is illustrated in Figure 4. The time ti+1 in equations 
(13) and (14) is most conveniently defined from ti and a specified time step, denoted by Δt. 

ti+1 = ti + Δt (15) 

It is most convenient to make this Δt to have the same value for all time indices i, so that 
equation (15) can be coded into the spreadsheet to compute each time value ti+1, as indicated 
in Figure 4. This is much easier than typing in each ti value by hand. 

More spreadsheet rows can be added to advance the calculation in time for as long as needed. 
Typically there will be some termination criteria, which will depend on the case at hand. 
For the rocket, suitable termination criteria might be any of the following. 

hi+1 < h0 rocket fell back to earth 
hi+1 < hi rocket has started to descend 
Vi+1 < 0 rocket has started to descend 

Accuracy 
The discrete sequences hi, Vi are only approximations to the true analytic solutions h(t), 
V (t) of the governing ODEs. We can define discretization errors as 

Ehi 
= hi − h(ti) (16) 

EVi 
= Vi − V (ti) (17) 

although h(t) and V (t) may or may not be available. A discretization method which is 
consistent with the continuous ODEs has the property that 

|E| → 0 as Δt → 0 

The method described above is in fact consistent, so that we can make the errors arbitrarily 
small just by making Δt sufficiently small. 
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