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Area and Bending Inertia of Airfoil Sections 

Calculation of the vertical deflection of a wing requires knowing the spanwise bending stiffness 
distribution EI(y) along the primary axis of loading. For a wing made of a uniform solid 
material, the modulus E is a simple scaling factor. The moment of inertia of the airfoil 
cross-sections about the bending axis x (called the bending inertia), is then related only 
to the airfoil shape given by the upper and lower surfaces Zu(x) and Zℓ(x). As shown in 
Figure 1, both the area A and the total bending inertia I are the integrated contributions 
of all the infinitesimal rectangular sections, each dx wide and Zu − Zℓ tall. The inertia of 
each such section is appropriately taken about the neutral surface position z̄ defined for the 
entire cross section. 
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A = Zu − Zℓ dx (1) 
0 

c 1 � �1 
Z2 − Z2 z̄ = dx (2) 

A 0 2 u ℓ 

c 1 � � 

I = (Zu − z̄)3 − (Zℓ − z̄)3 dx (3) 
0 3 

These relations assume that the bending deflection will occur in the z direction, which is a 
good assumption if the x axis is parallel to the airfoil’s chord line. 
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Figure 1: Quantities for determining and estimating the bending inertia of an airfoil section. 

Although equations (1) – (3) can be numerically evaluated for any given airfoil (e.g. using 
XFOIL’s BEND command), this is unnecessarily cumbersome for preliminary design work, 
where both A and I are needed for possibly a very large number of candidate airfoils or 
wings. 

For the purpose of approximating A and I, we first define the maximum thickness t, and 
maximum camber h, in terms of the upper and lower surface shapes. We also define the 
corresponding thickness and camber ratios τ and ε. 

t = max { Zu(x)− Zℓ(x) } (4) 

h = max {[Zu(x) + Zℓ(x)] /2} (5) 

τ ≡ t/c 

ε ≡ h/c 

Examination of equation (1) indicates that A is proportional to t c, and examination of (3) 
indicates that I is proportional to c t(t2 + h2). This suggests estimating A and I with the 
following approximations. 

A ≃ KA c t = KA c 
2 τ (6) 

I ≃ KI c t (t
2 + h2) = KI c 

4 τ(τ 2 + ε2) (7) 
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The proportionality coefficient can be evaluated by equating the exact and approximate A 
and I expressions above, e.g. 

c � �1 

c
KA ← Zu − Zℓ dx (8) 

2 τ 0 

c 1 � �1 
KI ← (Zu − z̄)3 − (Zℓ − z̄)3 dx (9) 

c4 τ(τ 2 + ε2) 0 3 

Evaluating these expressions produces nearly the same KA and KI values for most common 
airfoils: 

KA ≃ 0.60 (10) 

KI ≃ 0.036 (11) 

Therefore, the very simple approximate equations (6) and (7), with KA and KI assumed 
fixed, are surprisingly accurate. Hence, they are clearly preferred for preliminary design 
work over the exact but cumbersome equations (1), (2), (3). 
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