
Block 3 -Materials and Elasticity 
Lecture M17: Engineering Elastic Constants 

There are three purposes to this block of lectures: 
1. To complete our quick journey through continuum mechanics, to provide you with a 

continuum version of a constitutive law - at least for linear elastic materials 
s pq = E ?emn 

Elasticity 
Where does it 
come from? 

2. Increasingly, materials are designed along with the structure, you need insight into
what contributes to material properties. What you can control. What you cannot. This 

will also allow us to understand the limits of the model of linear elasticity for a material. 

3. To allow you to select quantitatively materials for applications as part of the design 

process. 

The lectures associated with objectives 2 and 3 will closely follow Ashby and Jones 

chapters 1-7. This is an excellent reference and will not be supplemented by web-posted 
notes. The notes for the lectures associated with objective 1 are reproduced here. 

Engineering Elastic Properties of Materials 
In order to understand how we link stress and strain we need to understand that there are 

two points of view to this matter. There is the experimental point of view that some 
properties (behaviors) are easier to measure than others, and there is the mathematical 

point of view that some representations of physical phenomena are mathematically easier 
to handle than others. In the present case, engineering elastic constants are derived from 

an experimental point of view, whereas the stress and strain tensors, are mathematically 

useful. Ultimately we need to resolve these two points of view. 



† 

† 

† 

Young’s modulus and Poisson’s ratio 
From the truss and strain laboratories you are now familiar with at least two elastic 
constants. 

If we apply a uniaxial tensile stress s L  to a constant cross-section rod of material, we 

will obtain a biaxial state of strain, consisting of an axial tensile strain eL  and a 

transverse strain eT . The axial strain will be tensile for a tensile applied stress, and the 

transverse strain will usually be compressive. We can measure the strains using 
resistance strain gauges. 
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† 
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For many materials, over some range of applied stress, the applied stress and the resulting 

strains will follow a linear relationship. This observation is the basis for the definition of 
the engineering elastic constants. The Young’s modulus, E, is defined as the constant of 

proportionality between a uniaxial applied stress and the resulting axial strain, i.e: 

s L = EeL 

Note. This only applies for a uniaxial applied stress, and the component of strain in the 
direction of the applied stress. 

We can also define the Poisson’s ratio, n , as the ratio of the transverse strain to the axial 
strain. Since for the vast majority of materials the transverse strain is compressive for a 

tensile applied stress, the Poisson’s ratio is defined as the negative of this ratio, to give a 
positive quantity. I.e: 

eTn = -
eL 

A similar process, of performing experiments in which a well-defined stress state is 
applied and the resulting strain state is characterized leads us to define two other elastic 

constants. 

The Shear Modulus 
Application of a state of pure shear, leads to a shear strain:

 Note angles are exaggerated in the figure. 
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An applied shear stress leads to an applied shear strain. The shear strain, g , is defined in 

engineering notation, and therefore equals the total change in angle: g = q . 

Consistent with the definition of the Young’s modulus, the Shear modulus. G, is defined 
as: 

t = Gg 

Again, note, that this relationship only holds if a pure shear is applied to a specimen. 

The Bulk Modulus 
The final elastic constant that is of interest to us is that of the bulk modulus. Materials 

are slightly compressible. If a hydrostatic pressure, p, is applied to a volume of material, 
V, this will result in a slight reduction in volume, DV. 

DV
This leads to a definition of the volumetric strain, D: D = 

V 



† 

†
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Thus we can define a bulk modulus, K, as: 
p = KD 

Note, that if the pressure is represented as a stress, it would be negative, as would the 
change in volume. 

For reasons that will become apparent later, The Young’s modulus, Shear Modulus, Bulk 
modulus and Poisson’s ratio are linked. For most materials Poission’s ratio’s are 

3
approximately 0.33, and for these materials K ª E  and G ª E . However, values of

8 
the Young’s modulus can vary widely. 



The Young’s Moduli of Engineering Materials 
A useful way of representing the range of Young’s moduli is to plot them for all the 

classes of material against some other material property. Since we are often interested in 
light weight structures, we will choose the density of the materials for this purpose. 

From: Material Selection in Mechanical Design, M.F Ashby, Pergamon Press, Oxford, 

Note, how the different classes of material tend to cluster: Metals have relatively high 

moduli and high densities. Polymers have low moduli and densities. Glasses and 

1992 



ceramics have high moduli and somewhat lower densities than metals. There are also 

some materials that have quite wide ranges of moduli (and densities), while others 
(metals and ceramics) are relatively narrowly banded. Finally note how wide an overall 

range of moduli is represented, from 0.01 GPA for foams to 1000 GPA for diamond. The 
range of densities is somewhat less, but still spans more than two orders of magnitude. 

M18 Elastic moduli of composites, anisotropic materials 
We will return to better understand what leads to the moduli characteristic of different 

classes of material in a few lectures time. 

Now let’s get back to examining the elastic constants. Let us look more closely at one 

particular class of material, fiber composites. Reference to the material property chart 
above we can see that composites (CFRP – carbon fiber reinforced polymers) have higher 

modulus to density ratio’s than many metals. Why is this? 

The key is that very fine (6 µm diameter) carbon fibers can be produced with a modulus 

comparable to that of ceramics (200-1000 GPa). These fibers also have very tensile high 
strengths, much higher than normally exhibited by bulk ceramics, which tend to be 

brittle, and have a low strength as a result. However, they are fibers, so they cannot carry 
multiaxial loads on their own. However, if they are surrounded by a “matrix” to provide 

lateral support, and to transfer load between fibers if one fiber happens to break, they can 

result in materials with high moduli and strengths. Polymers such as epoxy resins are 
often used as matrices. 

E

Let us examine how we can estimate the Young’s modulus of the resulting composite 

material. Initially we will consider a two dimensional case. 2-D fibers interspersed with 

a 2-D matrix. The fibers have a Young’s modulus Ef and the matrix a Young’s modulus 

m 



We can define a volume fraction of fibers, Vf, such that the total volume of fibers is 

equal to the volume fraction of fibers multiplied by the total volume of material. We can 
similarly define a volume fraction of matrix, Vm, which in the absence of any other 

materials in the composite, or porosity, is given by Vm=1-Vf . 

Now consider what happens if the composite is loaded by force F, that results in a 

displacement, u, parallel to the fiber direction: 
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If the fiber and matrix are well bonded together, they experience the same strain in the 

u
fiber direction: eL = . 

L 
However the resulting stress in the fibers and matrix is different because they have 
different Young’s moduli: 

s f = E f eL  and s m = EmeL 

The total force applied to the composite specimen must be in equilibrium with the total 

force due to the stresses in the fiber and matrix. The internal force is given by 

multiplying the stress by the area of fiber or matrix it acts on. If the total cross-sectional 
area of the composite specimen is A, then the cross-sectional area of fibers and matrix are 

given by the total area multiplied by the volume fraction of fiber or matrix. Thus the 
force carried by the fibers and matrix are given by: 

F = V f As f + Vm As m 

Substituting in for the stress in terms of the strain we obtain: 

F = V f AE f eL + (1 - V f )AEmeL 

Rearranging and dividing by the cross sectional area gives the average longitudinal stress 

carried by the composite in terms of the longitudinal strain: 

s L = (V f E f + (1 - V f )Em )eL 

From which we can see that the modulus of the composite parallel to the fiber direction is 

given by 

EL = (V f E f + (1 - V f )Em ) 
Now consider what happens if the composite specimen is loaded perpendicular to the 

fiber direction: 
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Now the load must be carried equally by the fibers and matrix, but the fibers and matrix 

will experience different strains, em and e f . The strains lead to deformations that 

must sum to give the total elongation, v, of the composite: 

Hence; v = em (1 - V f )W + e f V f W 

Given that the strain in the matrix and fibers depend on the stress in the matrix and fibers, 

and their Young’s moduli. We obtain: 

s v = (1 - V f )W + 
E 
s 

f 
V f W 

Em 

Dividing through by the gauge length, W gives the total strain in the composite, 

s 
eT = (1 - V f ) + 

E 
s 

f 
V fEm 



† 

From which we can see that the Young’s modulus of the composite transverse to the fiber 

direction is given by: 

1ET = 
(1 - V f )

+ 
V f 

Em E f 

Which is different from the Young’s modulus parallel to the fiber direction. Thus fiber 

composites are an example of a material that has different properties in different 

directions. This is termed “anisotropy” and most fiber composites are “anisotropic”. 
Materials which have the same properties in all directions are termed “isotropic”. 

Note, that the estimate for the Young’s modulus of a fiber composite parallel to the fiber 

direction is very good, however, the estimate for the Young’s modulus perpendicular to 

the fiber direction underestimates the value you would measure experimentally. 

Since we are interested in composite materials for many structural applications, we would 
like to have a method for linking general stress and strain that can account for anisotropy. 

So back to continuum elasticity. 



M19 Generalized Hooke's Law 
We have met the engineering elastic constants, Young's moduli, Shear Moduli and 
Poisson's ratio's, and understand that many structural materials behave elastically over 

some range of stress and strain. 

Now we want to add a mathematical formalism to this physical basis, i.e. our 3rd great 

principle, that of constitutive behavior. 

A couple of problems we would like to be able to solve: 

We would also like to be able to deal with any state of multiaxial stress and convert to the 

resulting strains, or vice versa. To do this we need to revisit tensor stress and strain. 

i.e. we want the elastic property that links the stress tensor to the strain tensor:

esmn=Emnpq pq 

Where E is the 4th order (i.e. 4 subscripts) ELASTICITY (or STIFFNESS) tensor.mnpq 

e.g: 



s11 = E1111e11 + E1112e12 + E1113e13 ( p = 1,sum on q ) 

. +E1121e21 + E1122e22 + E1123e23 ( p = 2, sum on q ) 

+E1131e31 + E1132e32 + E1133e33 (p = 3,sum on q ) 

4th order tensor has 81 components, m,n,p,q =1, 2 and 3 therefore 34 = 81 terms 

But fortunately there are symmetries, so there are fewer independent terms 

1. smn= snm (symmetry of the stress tensor - due to equilibrium of moments) 

this implies that: Emnpq= Enmpq 

2. emn= enm (symmetry of the strain tensor - due to definition of strain tensor - geometrical


considerations)


this implies that: Emnpq= E
mnqp 

3. From thermodynamic considerations (first law) Emnpq= Epqmn 

Also note that since smn= snm so the nine separate equations represented by: smn=E emnpq pq 

reduce to six. 

And since emn= enm and Emnpq= E terms such as Emnpqe pq + Emnqpeqp = 2Emnpqe pqmnqp, 

With all of these considerations we end up with only (!) 21 independent components of 

the elasticity tensor. In matrix form, this can be written as: 



Ïs11 ̧  È E1111 E1122 E1133 2E1123 2E1113 2 E1112 ̆ Ïe11 ̧  
Ô Ô Í Ô 
Ô 

s22 E1122 E2222 E2233 2E2223 2E2213 2 E2212 
˙Ô e22 

ÔÔ Í ˙Ô 
Ôs33 Ô Í E1133 E2233 E3333 2E3323 2E3313 2 E3312 ̇ Ôe33 Ô 
Ì ˝ = Í Ì ˝ 
Ôs23 Ô Í 

E1123 E2223 E3323 2E2323 2E1323 2E1223 
˙ 
Ôe23 Ô˙ 

ÔÔs13 Ô Í E1113 E2213 E3313 2E1323 2E1313 2E1213 ̇ Ôe13 
Ô Ô Í Ô Ô 
Ós12 ̨  ÎE1112 E2212 E3312 2E1223 2E1213 2 E1212 ̊  

˙
Óe12 ̨  

Components of Emnpq can be placed into 3 groups according to their physical significance: 

¸Ï E1111 E1122
Ô 	 Ô 

˝ Link extensional strains to extensional stressesÌ E2222 E1133 
Ô Ô
Ó E3333 E2233 ̨  

¸Ï E1212 E1213
Ô 	 Ô 

Link shear strains to shear stressesÌ E1313 E1323 ̋  
Ô Ô
Ó E2323 E1223 ̨  

¸Ï E1112 E2212 E3312
Ô Ô 
Ì E1113 E2213 E3313 ̋  Coupling terms, link extensional strains to shear stresses 
Ô Ô
Ó E1123 E2223 E3323 ̨  

and shear strains to extensional stresses. 
Since it links strains to stresses, Emnpq is also termed the "stiffness tensor". By inverting 

the matrix we could also obtain the tensor linking stresses to strains, i.e. emn=S smnpq pq 

Where Smnpq is the "Compliance" tensor (Why S is for compliance and E is used for 
stiffness is unclear to me!) 

Even with the simplifications, 21 independent terms seems rather too many to have to 
deal with!. Let's go back to the engineering elastic constants and see if we can see how to 

simplify this list further. 



_ _ _ _ _ _ 

We know that there are several different classes of material. Most metals and ceramics 

are isotropic, that is they have the same properties in any direction that you measure. By 
contrast, fiber-reinforced composites may have different properties in different directions, 

i.e. they are anisotropic. 

Elasticity of Isotropic Materials 
Let's start with the simplest case of an isotropic material that is loaded by all possible 
components of stress and we want to know the resulting strains. Also let's ignore thermal 

expansion strains for the time being. We have six components of stress producing six 
components of strain, therefore we need a six by six matrix 

e xÊ ˆ _Ê _ _ _ _ _ˆ s xÊ ˆ 

e y 
Á 
Á 

˜ 
˜ 

_ Á 
Á 

_ _ _ _ _ ̃  
˜ 

s y 
Á 
Á 

˜ 
˜ 

ezÁ ˜ _Á _ _ _ _ _˜ s zÁ ˜ 
g zy 
g zx 

Á 
Á 

˜ 
˜ 

= 
_ Á 

Á 
_ _ _ _ _ ̃  

˜ 
t zy 

Á 
Á 

˜ 
˜ 

g xy 
Á 
Á 

˜ 
˜ 

_Á 
Á 

_ _ _ _ _˜ 
˜ 

t zxÁ 
Á 

˜ 
˜ 

Ë ¯ Ë _ _ _ _ _¯ t xyË ¯ 

We also know that for small strains, and elastic materials the contributions of the separate 
components of stress will superimpose. So let's consider the case of only sx applied and 

all the other components of strain are zero: 

Ê e x ˆ Ê _ _ _ _ _ _ˆ Ês x ̂  
Á 

e y 
˜ Á _ _ _ _ _ _ ̃  Á 0 ˜ 

Á ˜ Á ˜ Á ˜ 
Á ez ˜ Á _ _ _ _ _ _˜ Á 0 ˜ 

=Ág zy ̃  Á ˜ Á 0 ˜ 
Ág zx ̃  Á ˜ Á ˜ 


Á _ _ _ _ _ _˜ Á 0 ˜
Ág xy ̃  
˜ 

ÁÁ ˜ Á ˜ 
Ë ¯ Ë _ _ _ _ _¯ Ë 0 ¯ 

Taking each component in turn: 



What does ex equal?. This just reduces to a 1-D tensile test, so ex =
s x 
E 

And ey , ez are given by the Poisson contractions, so: ey = e z = -ne x = -n
s x 
E 

This allows us to fill in the first line of the matrix, and also by noticing that we could 

have equally well applied s  or sz, and obtained similar relationships, we can fill in all ofy

the top left hand quadrant of the matrix: 
-n -nÊ e x ˆ 

Ê 1 _ _ _ ̂  Ê s x ˆE E ˜ Á ˜Á ˜ 
Á 
Á 

-
E 
n 1 -n _ _ _˜ Á 

s y 
˜ 

e yÁ ˜ 
Á E E E 

Á ez ˜ -n -n 1 ˜ Á s z ˜ _ _ _˜ Á ˜Á ˜ =
Á E E E 

t
Á 
g zy Á _ zy

˜ _ _ _ _ _ ̃  Á ˜ 
Á g zx ̃  

Á ˜ Át zx ̃  _ _ _ _ _ _˜ Á ˜Á ˜ Á
Á

Ëg xy ̄  _ ̄  
˜ Ët xy ̄Ë _ _ _ _ _ 

If instead of applying an extensional stress we applied a shear stress, we know that the 

shear stress and shear strain are linked by the shear modulus, so: 

Ê 1 -n -n ˆ _ _ _ 
˜ Ê s x ˆÊ e x ˆ Á E E E 

Á ˜ Á -n 1 -n _ _ _ ̃  Á 
s ˜e y yÁ E E Á ˜˜ Á -

E 
n -n 1 ˜ 

_ _ _ ̃Á ez ˜ Á E Á sz ˜E E=Á ˜ Á 1 t
Á 
g zy _ _ _ 0 0 ̃  

Á 
Á 

zy 
˜ 

˜ Á G ˜ ˜ 
Á g zx ̃  Á _ _ _ 0 1 0 ̃  Á 

Á 
t zx ̃  

Á 
Ëg xy ̄  

˜ Á
Á 

G ˜
˜ 


Ë _ _ _ 0 0 1 ̃  Ët xy ̄  

G ̄  

Finally we note that for isotropic materials the application of an extensional stress does 
not result in a shear strain or vice versa, so the top right and bottom left quadrants are 

populated by zeros: 



Ê 1 -n -n 0 0 0 ̂  
Ê e x ˆ Á E E E ˜ Ê s x ˆ 
Á ˜ Á -n 1 -n 0 0 0 ̃  Á 

s ˜e y yÁ E E Á ˜˜ Á -
E 
n -n 1 ˜ 

Á ez ˜ Á E 
0 0 0 ̃  Á sz ˜E E=Á ˜ Á 1 t

Á 
g zy 0 0 0 0 0 ̃  

Á 
Á 

zy 
˜ 

˜ Á G ˜ ˜ 
Á g zx ̃  Á 0 0 0 0 1 0 ̃  Át zx ̃  
Á 
Ëg xy ̄  

˜ Á
Á 

G Á ˜
˜ 


Ë 0 0 0 0 0 1 ̃  Ët xy ̄  

G ̄  

We have three separate elastic constants required, i.e: E, n and G. However if we go 

back to our knowledge of stress and strain transformation we can reduce this further. 
Remember that the application of a shear stress can be thought of as a shear stress 

resulting in a shear strain: 
t 

g = 
G 

or a biaxial stress state, of a combined tension and compression, at 45 degrees to the axis 

of pure shear, i.e: 

In terms of the Mohr's circles of stress and strain these appear as (note the factor of two 

for the representation of shear strain on the Mohr's circle): 



For the biaxial tensile and compressive stress the resulting (principal) strain is given by: 

(see CDL 5.4) 
s I s II = -s IeI = -n s II
E E 

1but for the case of pure shear: eI = 
2 

g (From Mohr's Circle -remember the 

factor of two between tensor and engineering shear strain) 
and: 
t = s II = -s I 

Ê 1 n ˆt fi G = 
E 

¯ ( 
\g = 2Ë E 

+ 
E 2 1 +n ) 

So we actually only have two independent elastic constants for an isotropic material. 

Note that this only applies for isotropic materials 

If we want to go in the reverse direction (i.e. have known strains and want to calculate 

stresses) we need to invert the matrix of elastic constants. Note, this situation may arise 
because we can experimentally measure strains using strain gauges. The inverse matrix 

is usually expressed in terms of groupings of the elastic constant, known as Lamé's 
constants, m & l , where: 



- -

E 
m = = G 

2 1+ n)( 

nE 
l = 

(1 +n )(1 - 2n) 

Ês x ˆ Êl + 2m l l 0 0 0ˆ Ê e x ˆ 
Á ˜ Á ˜ Á ˜ 
Á

s y 
˜ Á 

l l + 2m l 0 0 0 e y
˜ Á ˜ 

Á s z ̃  Á l l l + 2m 0 0 0˜ Á ez ˜ 
Thus: Á = 

t xy 
˜ Á 0 0 0 m 0 0 

˜ 
˜ 

Á 
Á 
g xy 

˜ 
Á ˜ Á 
Át xz ̃  Á 0 0

Á ˜ Á 

Ëtyz ̄  Ë 0 0


˜ 
0 0 m 0˜ Ág xz ̃  

˜ Á ˜ 
0 0 0 m¯Ëg yz ̄  

We can also include the effect of thermal expansion: 

Ê 1 n n 
Ê e x ˆ Á E E E 

0 0 0 ˆ 
˜ Ês x ˆ Êaˆ 

nÁ ˜ Á -
n 1 

- 0 0 0 ˜ Á 
s ˜ Á ˜e y yE E EÁ ˜ Á n n 1 ˜ Á ˜ Á

a
˜ 

Á ez ˜ Á - E 
- 0 0 0 ˜ Ás z ˜ Áa˜E=Á ˜ Á 1 Á ˜ 

Á
g zy 0 0 

E 

0 0 0 ˜ t zy 
˜ + Á 0 

DT 

˜ Á G ˜ Á ˜ Á ˜ 
Á g zx ̃  Á 0 0 0 0 1 0 ˜ Át zx ̃  Á 0˜ 
Á 
Ëg xy ̄  

˜ Á
Á 

G Á ˜ Á ˜ 
˜ 


Ë 0 0 0 0 0 1 ˜ Ët xy ̄  Ë 0¯ 


G ̄  

Can now relate back to the elasticity tensor that we started with, remembering that 

engineering shear strain is defined as being twice tensor shear strain, i.e. gxy=2e12 etc.: 

Ïs11 ̧  È E1111 E1122 E1133 2E1123 2E1113 2 E1112 ̆ Ïe11 ̧  
Ô Ô Í Ô 
Ô 

s22 E1122 E2222 E2233 2E2223 2E2213 2 E2212 
˙Ô e22 

ÔÔ Í ˙Ô 
Ôs33 Ô Í E1133 E2233 E3333 2E3323 2E3313 2 E3312 ̇ Ôe33 Ô 
Ì ˝ = Í Ì ˝ 
Ôs23 Ô Í 

E1123 E2223 E3323 2E2323 2E1323 2E1223 
˙ 
Ôe23 Ô˙ 

ÔÔs13 Ô Í E1113 E2213 E3313 2E1323 2E1313 2E1213 ̇ Ôe13 
Ô Ô Í Ô Ô 
Ós12 ̨  ÎE1112 E2212 E3312 2E1223 2E1213 2 E1212 ̊  

˙
Óe12 ̨  



= l + 2mE1111 = E2222 = E3333 

= lE1122 = E1133 = E2233 

= m = Gand E1212 = E1313 = E2323 

All other terms are equal to zero. 

Note that E1111 does not simply equal E, the Young's modulus, but 
= GE1212 = E1313 = E2323 



Elasticity for Non-Isotropic Materials 

For more elastically complicated materials more of the elastic constants take on different 

values according to the direction in which they are measured. This is known as 
anisotropy. We will consider two important cases of composites: 

Transversely Isotropic Materials 
In M18 we estimated the elastic moduli of a composite reinforced by unidirectional fibers 

by assuming that they carried equal strain in the fiber direction, but equal stress in the 
transverse direction.

 If we think about the physical situation we will see that we can define a longitudinal 
direction along the axis of the fibers and a plane that is transverse to the fibers. The 

properties in the plane transverse to the fibers are isotropic, but can differ significantly 

from those in the axial direction.

 E.g. in the diagram shown below, the modulus in the x1 direction, i.e. the longitudinal 
direction, is given by the rule of mixtures estimate, i.e: EL=VfEf+VmEm 

x1 

x2 

x3 



And the modulus in the x2 and x3 direction, or for that matter any direction in the x2-x3 

plane (the transverse plane), is the same and might be estimated by the inverse rule of 
1mixtures, i.e.: ET = 

Ï Vf ¸VmÌ + ˝ 

Ó E f Em ̨  


There will clearly be a Poisson's contraction in the transverse direction, due to an applied 
strain in the longitudinal direction, and vice versa, so we can define: 

e2 = e3 = -nLTe1 for an applied strain, e1 =
s1 
EL 

and e1 = -nTLe2 = -nTLe3  for applied strains of e2 =
s 2 or e3 =

s3 respectively.
ET ET

Also there would be a Poisson contraction in the x2 direction due to an applied strain in 
the x3 direction and vice versa, i.e.: 
e2 = -nTTe3  and e3 = -nTTe2  for applied strains respectively e3 and e2 respectively. 

There must also be a shear modulus between the longitudinal direction and the transverse 

direction, and another one in the transverse plane. i.e. 
t12 = 2GLTe12  note the factor of two due to the definition of engineering vs. tensor strain 

t13 = 2GLTe13 

t23 = 2GTTe23 

But we know that the material is isotropic in the transverse plane, therefore: 
ET=GTT (2 1 +nTT ) 

Furthermore, due to thermodynamic considerations (it would be a violation of the first 
law if this was not the case).: 

= nTLELn LT ET 

This leaves us with five independent elastic constants: EL, ET, GLT, nLT, and nTT in matrix 

form for the material orienation shown we would have: 



È 1 -n LT -n LT 0 0 0 ˘ 
Í EL EL EL ˙ 

Ïs11 ̧Ïe11 ̧  
Í -nTL 1 -nTT 0 0 0 ˙ 

Ô ÔÔ Ô 
Ô 
e22 Í ET ET ET ˙ 

Ô 
s 22

Ô Ô--nTL nTT
Ôe33 Ô Í 

ET E
1 
T 

0 0 0 ˙ Ôs 33 Ô 
Ì ˝ = Í ET 

1 ˙ Ì ˝ 
Ôe23 Ô Í 0 0 0 0 0 ˙ Ôs 23 Ô 
Ôe13 Ô Í 

2GTT 
1 0 

˙ Ôs13 Ô 
0 0 0 ˙ Ô ÔÔ Ô Í 0 

Óe12 ̨  Í 
Í 0 0 0 
Î 

2GLT 
1 ˙ Ós12 ̨  

0 0 
2GLT ˚̇

 

As for an isotropic material we could also add on a vector with the strains due to thermal 
expansion, and we could invert the matrix to obtain the stiffness form. 

Orthotropic Materials. 

The second kind of non-isotropic materials that is of particular interest to aerospace 
structures are "Orthotropic Materials". Composite materials are rarely used as 

unidirectional material, the transverse properties (particularly strength and stiffness) are 

insufficient for most structural applications. Instead unidirectional layers (plies) are often 
combined to form laminates (rather like ply wood), e.g: the three ply composite shown 

below, orientated in an x, y, z rectangular cartesian coordinate system: 



y

z

t

x

t

We can estimate the Young's moduli, much as we did for the unidirectional material.  If

the longitudinal and transverse moduli are EL and ET respectively, then we might expect:

Ex ª
1
3

EL +
2
3

ET , Ey ª
2
3

EL +
1
3

ET , Ez ª ET

i.e. the properties are different in all three orthogonal directions.   Such a material is

termed orthotropic.   By similar reasoning to that applied to the transversely isotropic
case it requires 9 independent elastic constants to define an orthotropic material: 3

Young's moduli, three Shear Moduli and three independent Poisson's ratio's ie.:

Longitudinal Moduli: Ex =
s x
ex

, Ey =
s y
ey

, Ez =
s z
ez

 for sm applied only

Poisson’s ratios:

n xy =
-ey
ex

, nyx =
-e x
ey

, nzy =
-ey
ez

, n yz =
-ez
ey

, n zx =
-ex
ez

, nxz =
-ez
e x

nnm  represents Poisson’s ratio for transverse strain in xm direction when stressed in xn

direction

Reciprocity: nnmEm = nmnEn  (for n, m = x, y, z)



t yzShear Moduli: Gxy =
t xy  , Gxz =

t xz , G = 
g xy  g xz 

yz g yz 

And these can be represented in matrix form as: 

Orthotropic (Compliance form): 

Ï ex ¸ 
È 
Í E

1 
x 

-n xy  -n xz 0 0 0 
˙ 
˘ 

Ïs x ¸Ex Ex
Ô Ô Í -nyx  1 -n yz ˙ Ô Ô 
Ô ey Ô Í E E E

0 0 0 
˙ Ôs y Ô y y

Ô Ô Í -n
y
zx -nzy 1 ˙ Ô Ô 

ezÔ Ô Í Ez 
0 0 0 Ôsz Ô˙

Ì ˝ = Ez Ez 
1 Ì ˝

Í ˙
Ôg yzÔ 0 0 0 0 0 

˙ 
Ôt yzÔ

Í GyzÔ Ô Ô Ô1 ˙
Ôg xzÔ 

Í 0 0 0 0 0 Ôt xzÔ
˙

Ô Ô 
Í Gxz Ô Ô 

Óg xy˛ Í 0 0 0 0 0 1 ˙ Ót xy˛
ÍÎ Gxy  ̊̇  

There are other classes of elastic anisotropy that can be distinguished according to how


many elastic constants are required to describe them. Fortunately we generally do not

encounter fully anisotropic materials in practice. In all cases the engineering elastic


constants (Young's moduli, Shear Moduli, Poisson's ratios) can be equated to the


components of the stiffness and compliance tensors.


Degrees of Anisotropy:

Generally Anisotropic 21 Independent elastic constants


Monoclinic 13 Independent elastic constants


Generally Orthotropic  9 Independent elastic constants  (3 E’s, 3 n’s, 3 G’s)

Transversely Isotropic 5 Independent elastic constants (2 E's, 2 n’s, 1 G)

Cubic 3 Independent elastic constants
Isotropic 2 Independent elastic constants (E, n) 


