
M9 Shafts: Torsion of Circular Shafts

Reading: Crandall, Dahl and Lardner 6.2, 6.3 

A shaft is a structural member which is long and slender and subject to a torque 
(moment) acting about its long axis. We will only consider circular cross-section shafts 
in Unified. These have direct relevance to circular cross-section shafts such as drive 
shafts for gas turbine engines, propeller driven aircraft and helicopters (rotorcraft). 
However, the basic principles are more general and will provide you with a basis for 
understanding how structures with arbitrary cross-sections carry torsional moments. 
Torsional stiffness, and the shear stresses that arise from torsional loading are important 
for the design of aerodynamic surfaces such as wings, helicopter rotor blades and turbine 
fan blades. 

Modelling assumptions 

(a) Geometry (as for beam).  Long slender, L >> r (b,h) 

Note: For the time being we will work in tensor notation since this is all about shear 
stresses and tensor notation will make the analysis more straightforward. Remember 
we can choose the system of notation, coordinates to make life easy for ourselves! 

(b) Loading 
Torque about x1 axis, T (units of Force x length). We may also want to consider 

the possibility of distributed torques (Force x length/unit length) (distributed aerodynamic 
moment along a wing, torques due to individual stages of a gas turbine) 

No axial loads (forces) applied to boundaries (on curved surfaces with radial normal, or 
on x1 face) 

= 11 22 = 33 = 0 



(c)	 Deformation 

-Cross sections rotate as rigid bodies through twist angle , varies with x1  (cf. beams 
– plane sections remain plane and perpendicular)

- No bending or extensional deformations in x1 direction 

Cross-section: 
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Next, apply constitutive laws, i.e. stress-strain relations (assume isotropic), 

remember we are working in tensor notation: = mn , therefore need “2G”mn 2G 

= 23 = 023 2G 

= 12 ( )12 6
2G 

= 13 ( )13 7
2G 

Net moment due to shear stresses must equal resultant torque on section: 

equipollent torque, T = (x2 13  x3 12  )dx2dx3  (8) 

Apply equilibrium: 
∂ mn + fn = 0
∂xm 

∂ 11 + ∂ 21 ∂ 31i.e.: + = 0
∂x1 ∂x2 ∂x3 

∂ 12 + ∂ 22 ∂ 32+ = 0
∂x1 ∂x2 ∂x3 

∂ 13 + ∂ 23 ∂ 33+ = 0
∂x1 ∂x2 ∂x3 



Retaining non-zero terms we obtain

∂ 21 + ∂ 31 = 0 ( ) 
9
∂x2 ∂x3


∂ 12 = 0 ( ) 
10
∂x1


∂ 13 = 0 ( ) 
11
∂x1 

Solution 

Go back to stress-displacement relationships (4,5, 6 and 7) 

1 d 
12 = 2G 12 = 2G x32 dx1 

d 
12 = Gx3 dx1 

Similarly: 
1 d d 

= 2G x2 = Gx213 = 2G13 13 2 dx1 dx1 

Substitute into equation for resultant moment (8) 

T = (x2 13  x3 12  )dx2dx3 

2 d = x2 + x3
2 d 

dx2dx3dx1 dx1 
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2
define J = x2 + x3
2 dA 

Polar 2nd moment of area 

= 
R4 

for circular cross-section 
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d
Hence T = GJ 

dx1 

Torque-twist relation 

d ∂2w
(note, we can compare T = GJ for shafts with M = EI for beams)

dx1 ∂x2

Hence, relate stress to torque 
Tx3= 12 J


Tx2
= 13 J 
Express total shear as shear stress resultant, 

2 22 = T x3res = 12 + 13 
2 + x2 = Tr 

J J 
Tr Mz 

compare = 
J 
with xx = 

I 

Model works well for circular cross-sections and cylindrical tubes J = J1 J2 



Does not work for open sections:


We can approximate for other sections, e.g. square cross-section, J = 0.141a4 . 

For a full treatment of torsion of slender members see 16.20. 



A note on distributed torques:

Distributed torques are similar to distributed loads on beams: Consider equilibrium of a 
differential element, length dx1, with a distributed torque t (Nm/m) applied. Leads to an 
increase in the resultant internal torque, T from T to T+dT. 

T + 
dT 

dx1 
dx1 

dT
Mx1 

= 0 T + t(x1)dx1 + T + dx1dx1 

dT dS = t(x1) c.f. = q( x) 
dx1 dx 

Can also consider macroscopic equilibrium of shaft fixed at one end with a 
uniform distributed torque/length, t, applied to it: 

t/unit length 

FBD 

TA + tdx1 = 0 
0 

L 

TA = tL 



M10 Introduction to Structural Instability

Reading Crandall, Dahl and Lardner: 9.2, 9.3 

Elastic instabilities, of which buckling is the most important example, are a key limitation 
on structural integrity. The key feature of an elastic instability is the transition from a 
stable mode of deformation with increasing applied load to an unstable one, resulting in 
collapse (loss of load carrying capability) and possibly failure of the structure. Examples 
of elastic collapse are the buckling of bars in a truss under compressive load, the failure 
of columns under compressive load, the failure of the webs of “I” beams in shear, the 
failure of fuselage and wing skin panels in shear and many others. The only particular 
case we will consider here in Unified is the failure of a bar or column loaded in axial 
compression, however, as for the other slender members we have considered, the basic 
ideas will apply to more complex structures. 

A structure is in stable equilibrium if, for all possible (small)displacements/deformations, 
a restoring force arises. 

Before considering the case of a continuous structure we will consider a case in which we 
separate the stiffness of the structure from the geometry of the structure. 

Introductory Example:

Rigid, massless bar with a torsional spring at one end, stiffness, kt, which is also pinned. . 
The bar is loaded by a pair of horizontal and vertical forces at the free end, P1, P2. The 
bar undergoes a small angular displacement, . 

is small – exaggerated in the figure 

Independent applied 
loads, P1, P2



M = kt

Draw free body diagram:


Horizontal equilibrium: HA=-P1 

Vertical equilibrium: VA=P2 

Taking moments, counterclockwise positive: 

M LP1 cos P2 L sin = 0 

cos( 1 sin ) 
M LP1 P2 L = 0 

And 

Hence: 

kt LP1 L P2 = 0 

P1 = K t P2 L 
L 

Effective Stiffness - (note that 
it includes the load, P2) 



i.e. 

P1 = keff 
P1Rearranging gives: = 

kt P2L 
Hence: 

for P1 0 

= 0 for P2 < kt / L 

= •  for P2 Kt / L 

i.e. if P2 ≥ Kt static instability, i.e., spring cannot provide in restoring moment
L 

NOTE:	 If P2 negative - i.e. upward -stiffness increases 
But if P1and P2 removed or reduced, spring will allow bar to spring back to 
original configuration 

Plot Load vs. Displacement 

a) for case when P1=0. Obtain “bifurcation behavior” 

Bifurcation point 

P2 = K t 
L 



b) case P1>0 

Next time we will apply these idea to a column, i.e. a continuous structure with a 
continuous distribution of stiffness. Need to think about what is the relevant structural 
stiffness, i.e. the equivalent of (Kt L) in the spring/rigid rod system above. 


