
M12 Buckling of Simple Columns
Reading Crandall, Dahl and Lardner: 9.4

Now extend the idea of elastic instabilities to a continuous structural member.
Model of a column
A column is a slender structural member that carries axial compressive loads.
(a) Geometry – identical to a beam, long, straight, slender, symmetric cross-section etc.

  
L >> b, h

(b) Loading – axial compressive axial forces

(c.) Deformations

At low loads - same as a rod, axial (x) stresses, axial deformation only

At higher loads - buckling deflection (transverse) governed by bending relations

i.e.,  

† 

d2w
dx2 =

M
EI



deflected shape:

Draw free body diagram of deflected column:

From equilibrium: HA=P, VA=VB=0

We can now use method of sections, by taking a “cut” at an arbitrary x position (as for a
beam)

By equilibrium



† 

Fx = 0Æ
+

Â P + F = 0 fi F = -P
Fy = 0Â ↑+ S = 0
M A = 0 M - Fw(x) = 0Â

M + Pw(x) = 0

Substitute for the moment, M, using the moment-curvature relationship, obtain second
order differential equation

† 

EI d2w
dx2 + Pw = 0

This is the governing differential equation for Euler buckling (buckling of simple
columns)

Solution to Euler buckling

† 

w = elx (recall from 18.03)
rewrite as:

† 

d2w
dx2 +

P
EI

w = 0

† 

l2elx +
P
EI

elx = 0

† 

l2 =
-P
EI

Æ l
P
EI

± i

where 

† 

i = -1

+

Stabilizing
(restoring)

Tends to destabilize -
compressive load
as w increases



The physical significance of this solution will be more apparent if we express as sine and
cosine terms.  Hence we can express the complete homogeneous solution as:

† 

w = Asin P
EI

x + Bcos P
EI

x + Cx + D

For the simply supported case:

at x=0, M=0 (pinned supports)

† 

M = EI d2w
dx2 = 0 fi

d2w
dx2 = -A P

EI
sin P

EI
x - B P

EI
cos P

EI
x

† 

d2w
dx2 x = 0( ) = 0 fi B = 0

and w=0 at x=0

† 

w = 0 = +B + D

† 

\D = 0

Similarly at x=L

† 

w x = L( ) = 0 fi +Asin P
EI

L + CL = 0

† 

d2w
dx2 x = L( ) = 0 fi -A P

EI
sin P

EI
L = 0



So: 
  

A sin
P
EI

L
Ê 

Ë 
Á 

ˆ 

¯ 
˜ = 0   

† 

fi C = 0

This is satisfied if A=0, but this is not very interesting.

which leaves: 

† 

sin P
EI

L = 0 fi
P
EI

L = np

Thus buckling occurs if:

† 

P = n2p 2EI
L2

and the deformed shape

† 

w = Asin npx
L

n = 1 

n =2 

n=3 

the lowest value is the critical buckling load

† 

Pcrit =
p 2EI

L2
Other boundary conditions provide other values for A, B, C, & D, but the solution is
always of the form:

† 

w = Asin P
EI

x + Bcos P
EI

x + Cx + D

and the buckling load has the form:  Pcr =
cp2EI

L2

integer

Note: A is not uniquely
defined

Higher modes (n>1) only
achieved if first mode is

restrained



                              

Simply supported c= 1 Clamped-free c=1/4   clamped-clamped c= 4



Effect of Initial Imperfections on Buckling
Up to now we have considered the column to be initially straight and loaded along its
axis.  In reality a structure and its loading will never match these idealizations. Small
deviations from ideal do not matter when we are considering the behavior of beams,
shafts and rods in tensions, however they are quite important in determining elastic
instabilities.   There are two types of imperfection that commonly occur.

1.) Shape - initial deflection, w0(x) (exaggerated)

2.) Load eccentricity, loads applied a distance e from the neutral axis

Cases (1) and (2) are both handled in the same way, set up governing differential
equation and solve with solution of form:

† 

w = Asin P
EI

x + Bcos P
EI

x + Cx + D

But these initial imperfections introduce new boundary conditions

Consider case (2)

e.g., at 

† 

x = 0, L M = Pe

† 

x = 0 w = 0

† 

w = B + D = 0



† 

M = EI d2w
dx2 = Pe = -EI P

EI
B

Hence B = -e,  D =+ e

† 

x = L w = 0

† 

M = EI d2w
dx2 = Pe

Solving for A:

† 

M = EI d2w
dx2 = Pe = -AEI P

EI
Sin P

EI
L + EI P

EI
eCos P

EI
L

Hence

† 

A =

e Cos P
EI

L
È 

Î 
Í 

˘ 

˚ 
˙ -1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Sin P
EI

L
Note: A is now defined

Solving for C:

† 

w(L) = 0 =

e Cos P
EI

L
È 

Î 
Í 

˘ 

˚ 
˙ -1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Sin P
EI

L
Sin P

EI
L - eCos P

EI
L + CL + e

† 

w(L) = 0 = CL   hence C = 0

combining

† 

w = -e
1- cos P

EI
L

sin P
EI

L
sin P

EI
x + cos P

EI
x -1

Ê 

Ë 

Á 
Á 
Á Á 

ˆ 

¯ 

˜ 
˜ 
˜ ˜ 

now obtain finite values of w for all values of P
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Increasing e/L

3u
This behavior is similar to the case we considered in M10/M11 – of the axially loaded
rigid rod with the torsional spring at one end.

w

† 

Pcrit =
p 2EI

L2


