KEY CONCEPTS FOR MATERIALS AND STRUCTURES

Handout for Spring Term Quizzes

Basic modeling process for 1-D structural members

(1) Idealize/model — make assumptions on geometry, load/stress and deformations

(2) Apply governing equations (e.g. equations of elasticity)

(3) Invoke known boundary conditions to derive constitutive relations for structure (load-
deformation, load-internal stress etc.)

Analytical process for 1-D structural members
(1) Idealize/model — assumptions on geometry, load/stress and deformations
(2) Draw free body diagram
(3) Apply method of sections to obtain internal force/ moment resultants
(4) Apply structural constitutive relations to relate force/ moment resultants to
a) internal stresses
b) deformations (usually requires integration — invoking boundary conditions)

Elastic bending formulae

Based on convention for positive bending moments and shear forces:
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Bending of a symmetric cross section about its neutral axis (mid plane for a cross-section with two
orthogonal axes of symmetry).
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where o is the axial (bending) stress, M is the bending moment at a particular cross-section, I is the
second moment of area about the neutral axis, z is the distance from the neutral axis, E is the Young’'s
modulus of the material, w is the deflection, x is the axial coordinate along the beam, o, is the shear
stress at a distance z above the neutral axis, S is the shear force at a particular cross, section, Q is the
first moment of area of the cross-section from z to the outer ligament, b is the width of the beam at a
height b above the neutral axis.
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Standard solutions:

bh’ aRr*
Rectangular area, breadth b, depth h: 7= E Solid circular cross-section, radius R: I = T

3
Isosceles Triangle, depth h, base b: I = [93L6 (note centroid is at h/3 above the base)

Parallel axis theorem:
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If the second moment of area of a section, area A, about an axis is I then the second moment of area
I about a parallel axis, a perpendicular distance d away from the original axis is given by:

I'=1+Ad>

First moment of area
The first moment of area of a section between a height z from the neutral plane and the top surface

(outer ligament) of the section is given by:
hl2
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Standard solutions for deflections of beams under commonly encountered loading
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Singularity functions
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Integration of singularity functions: [ (x-a)"dx = s n= 0
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in a plane perpendicular to a principal direction.
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