Which of the following renders the isentropic relations invalid.

- 1. Flow is unsteady
- 2. Velocity is very large
- 3. * Gas is non-perfect
- 4. Changes between states 1 and 2 are finite (rather than infinitesimal)
- 5. Not sure

Which of the following is NOT an example of a δw or a δq process?

- 1. Bit of fuel inside CV ignites
- 2. * Gravity acts on descending CV
- 3. Friction acts along motion of CV
- 4. Pressure acts on contracting CV
- 5. Not sure

Note:

Only static internal energy changes were being considered, not kinetic energy changes Two fluid jets of the same density ρ and internal energy e flow as shown. What is the internal energy flow integral for the control volume?

$$\iint \rho \left(\vec{\mathbf{V}} \cdot \hat{\mathbf{n}} \right) \mathbf{e} \, d\mathbf{A}$$

- 1. $2\rho VA e$
- 2. $-2\rho VA e$
- 3. * 0
- 4. not sure

Two fluid jets of the same density ρ flow as shown. What is the kinetic energy flow integral for the control volume?

$$/\!\!/ \rho \left(\vec{\mathbf{V}} \cdot \hat{\mathbf{n}} \right) \frac{1}{2} \mathbf{V}^2 \ \mathbf{dA}$$

- 1. $\rho V^3 A$ 2. $-\rho V^3 A$
- 3. * 0
- 4. not sure

Air is forced through a porous plug. What's the expected $h_o(x)$ distribution?

4. Not sure

Air flows out of a nozzle from a pressurized tank at room temperature. The air comes out cold. What is the jet's density relative to ambient?

- 1. * Higher
- 2. Same
- 3. Lower
- 4. not sure

The spacing of the cars is 40m and 4m before and after the "shock". The shock appears stationary to a stopped pedestrian. How fast is the obstructing vehicle moving?

- 1. 3.3 m/s
- 2. * 3.0 m/s
- 3. 2.7 m/s
- 4. not sure

What is true about the temperatures T_1 , T_2 , T_3 , (or enthalpies h_1 , h_2 , h_3) at the points shown?

- 1. $T_1 > T_2 > T_3$
- 2. * $T_1 < T_2 < T_3$
- 3. $T_1 < T_2 = T_3$
- 4. Not enough information given
- 5. Not sure

Which flow pattern is physically correct?

3. Not sure

The two flows have the same wall shape. Which flow has a larger M_1 ?

3. Not sure

The two flows have the same M_1 . Which flow has a larger turning angle?

3. Not sure

Which is a physically-possible shock flow?

5. All are valid

6. Not sure

A fan expands from $M_1 \simeq 1$ to near vacuum. Approximately, what is the expected turning angle?

1.
$$\theta = 45^{\circ}$$

2.
$$\theta = 90^{\circ}$$

3. *
$$\theta = 130^{\circ}$$

4. not sure

A flow in a duct accelerates smoothly from M=0.5 to M=1.5. What must the duct look like?

- 5. Not sure
- 2. *

Low-speed flow is drawn from a reservoir by the exit pressure p_e .

$$p_r = 100000 \,\mathrm{Pa}$$

 $\rho_r = 1 \,\mathrm{kg/m}^3$
 $A = 1 \,\mathrm{m}^2$
 $A_{\mathrm{throat}} = 0.5 \,\mathrm{m}^2$

If $p_e = 99000 \,\text{Pa}$, what is \dot{m} ?

- 1. $100 \, \text{kg/s}$
- **2.** * 45 kg/s
- 3. $22.5 \,\mathrm{kg/s}$
- 4. not sure

