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Fluids – Lecture 19 Notes 

1. Airfoils – Overview 

Reading: Anderson 4.1–4.3 

Airfoils – Overview 

3-D wing context 

The cross-sectional shape of a wing or other streamlined surface is called an airfoil . The 
importance of this shape arises when we attempt to model or approximate the flow about 
the 3-D surface as a collection of 2-D flows in the cross-sectional planes. 
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In each such 2-D plane, the airfoil is the aerodynamic body shape of interest. 2-D section 
properties become functions of the spanwise coordinate y. Examples are L′ (y), Γ(y), etc. 
Quantities of interest for the whole wing cn then be obtained by integrating over all the 
sectional flows. For example, 

b/2 
′ L = L (y) dy 

−b/2 

where b is the wing span. The airfoil shape is therefore an important item of interest, since 
it is key in defining the individual section flows. 

It must be stressed that the 2-D section flows are not completely independent, but rather 
they influence each other’s effective angle of attack, or the apparent ~V

∞ 
direction in each 2-D 

plane. Fortunately this complication does not prevent us from treating each 2-D plane as 
though it was truly independent, since the angle of attack corrections can be added separately 
later. 

Nomenclature 

The figure below shows the key terms used when dealing with airfoil geometry. The Mean 

Camber Line is defined to lie halfway between the upper and lower surfaces. 
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Aerodynamic Characterization 

V
∞ 

is defined by its magnitude V
∞ 

= |~The freestream velocity vector ~ V
∞
|, and the angle of 

R
attack α it makes with the airfoil’s chord line. The overall aerodynamic loads on the airfoil 

′are the resultant force/span vector ~ and the moment/span M ′ , by convention taken about 

D
the quarter-chord location. The resultant force is resolved into a lift force L′ and drag force 

′ perpendicular and parallel to ~V
∞

. 
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The forces and moment are more conveniently nondimensionalized using the freestream dy­
1namic pressure q

∞ 
≡ 

2 
ρ

∞
V 2 and the chord c, giving the lift, drag, and moment coefficients. 

∞ 

c
L′ D′ M ′ 

ℓ ≡ , cd ≡ , cm ≡ 
q
∞ 

c q
∞ 

c q
∞ 
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Dimensional analysis reveals that these will depend only on the angle of attack α, the 
Reynolds number Re ≡ ρ

∞
V

∞
c/µ

∞
, the Mach number M

∞ 
≡ V

∞
/a

∞
, and on the airfoil 

shape. 
cℓ , cd , cm = f ( α , Re , M

∞ 
, airfoil shape ) 

For low speed flows, M
∞ 

has virtually no effect. And for a given airfoil shape, we therefore 
have 

cℓ , cd , cm = f (α , Re ) (low speed flow, given airfoil) 

Typical cℓ(α) and cm(α curves for any given Re have a number of important features, as 
shown in the figure. For moderate angles of attack, the cℓ(α) curve is nearly linear, and very 
closely matches the one predicted by potential-flow theory (e.g. a panel method). At some 
larger angle of attack, cℓ curve reaches a maximum value of cℓmax 

and then decreases. For 
α’s beyond cℓmax 

the airfoil is said to be stalled , and exhibits varying amounts of separated 
flow. An analogous situation occurs for large negative α’s. 

Within the linear region, the cℓ(α) curve can be closely approximated with a linear fit. 

cℓ(α) = a0 (α − αL=0) (away from stall) 

Here, a0 is the lift-curve slope, and α is the zero-lift angle. These can be measured or 
computed reasonably accurately with a potential-flow method. 

L=0 

2 



cl cm 

a = 
d c 
d α

l 
0 

L=0α 

cl max 

potential−flow 
prediction 

αα 

The moment coefficient cm(α), when defined about the quarter-chord point, is very nearly 
constant away from stall. Again this is predicted well by potential-flow methods. Past stall, 
the cm(α) curve deviates sharply from its constant value. 

The drag coefficient cd can be plotted versus α, as shown in the figure on the left. However, 
a more useful and more standard way is to plot cℓ vs cd, with α simply a dummy parameter 
along the curve. This plot is called a drag polar, and is shown in the figure on the right. 
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One reason for using the drag polar format is that when evaluating the aerodynamic per­
formance of an airfoil, the α values are not really relevant. All that matters is the drag 
and how it compares to lift. The drag polar format compares these directly, and hence 
summarizes the most important features of the airfoil’s drag characteristics in one plot. One 
such feature is the maximum lift-to-drag ratio, or (cℓ/cd)max, which is where a line from the 
origin lies tangent to the polar curve. The cℓmax 

and cdmin 
values are also directly visible. 

An aerodynamicist might also note the low-drag range of lift coefficients where the airfoil 
naturally wants to operate. 

It must be stressed that cd values are roughly 100 times smaller than typical maximum cℓ 

values. Hence, the cd axis on a polar plot is greatly enlarged. 
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A sample polar plot and cℓ(α; Re) and cm(α; Re) curves for an actual sailplane airfoil are 
shown below, for two different Reynolds numbers. 
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