Fluids — Lecture 13 Notes

1. Bernoulli Equation

2. Uses of Bernoulli Equation
Reading: Anderson 3.2, 3.3

Bernoulli Equation

Derivation — 1-D case
The 1-D momentum equation, which is Newton’s Second Law applied to fluid flow, is written
as follows.
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We now make the following assumptions about the flow.
e Steady flow: 9/0t =0

e Negligible gravity: pg, ~ 0

e Negligible viscous forces: (F})viscous == 0

e Low-speed flow: p is constant

These reduce the momentum equation to the following simpler form, which can be immedi-
ately integrated.
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The final result is the one-dimensional Bernoulli FEquation which uniquely relates velocity
and pressure if the simplifying assumptions listed above are valid. The constant of integration
Do is called the stagnation pressure or equivalently the total pressure and is typically set by
known upstream conditions.

Derivation — 2-D case
The 2-D momentum equations are
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Making the same assumptions as before, these simplify to the following.
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Before these can be integrated, we must first restrict ourselves only to flowfield variations
along a streamline. Consider an incremental distance ds along the streamline, with projec-
tions dr and dy in the two axis directions. The speed V likewise has projections v and
v.
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Along the streamline, we have
dy _ v
dr  wu
or
udy = vdx (3)

We multiply the z-momentum equation (1) by dx, use relation (3) to replace vdz by udy,
and combine the u-derivative terms into a du differential.
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We multiply the y-momentum equation (2) by dy, and performing a similar manipulation,
we get
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Finally, we add equations (4) and (5), giving
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which integrates into the general Bernoulli equation

1
§pV2 + p = constant = p, (along a streamline) (6)
where V2 = u? + v? is the square of the speed. For the 3-D case the final result is exactly
the same as equation (6), but now the w velocity component is nonzero, and hence V? =
u? + 0% + w

Irrotational Flow

Because of the assumptions used in the derivations above, in particular the streamline rela-
tion (3), the Bernoulli Equation (6) relates p and V' only along any given streamline. Different
streamlines will in general have different p, constants, so p and V' cannot be directly related
between streamlines. For example, the simple shear flow on the left of the figure has parallel
flow with a linear u(y), and a uniform pressure p. Its p, distribution is therefore parabolic
as shown. Hence, there is no unique correspondence between velocity and pressure in such
a flow.
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However, if the flow is irrotational, i.e. if V = V¢ and V2 = |[V@|2, then p, takes on the same
value for all streamlines, and the Bernoulli Equation (6) becomes usable to relate p and V' in
the entire irrotational flowfield. Fortunately, a flowfield is irrotational if the upstream flow
is irrotational (e.g. uniform), which is a very common occurance in aerodynamics. From the
uniform far upstream flow we can evaluate

1
Po = Dot 5PVI = Do
and the Bernoulli equation (6) then takes the more general form.

1
3 pV: 4+ D = Do (everywhere in an irrotational flow) (7)

Uses of Bernoulli Equation

Solving potential flows
Having the Bernoulli Equantion (7) in hand allows us to devise a relatively simple two-step
solution strategy for potential flows.

1. Determine the potential field ¢(z,y, z) and resulting velocity field V = V¢ using the



governing equations.

2. Once the velocity field is known, insert it into the Bernoulli Equation to compute the
pressure field p(zx,y, z).

This two-step process is simple enough to permit very economical aerodynamic solution
methods which give a great deal of physical insight into aerodynamic behavior. The alter-
native approaches which do not rely on Bernoulli Equation must solve for V(:E,y,z) and
p(z,y, z) simultaneously, which is a tremendously more difficult problem which can be ap-
proached only through brute force numerical computation.

Venturi flow
Another common application of the Bernoulli Equation is in a venturi, which is a flow tube
with a minimum cross-sectional area somewhere in the middle.

Assuming incompressible flow, with p constant, the mass conservation equation gives
AVi = AV, (8)

This relates V7 and V5 in terms of the geometric cross-sectional areas.
Vo = Vi—

Knowing the velocity relationship, the Bernoulli Equation then gives the pressure relation-
ship.

1 1
L+ §PV12 = Po = p2+ 5;0‘/22 (9)

Equations (8) and (9) together can be used to determine the inlet velocity Vi, knowing only
the pressure difference p; — py and the geometric areas. By direct substution we have
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A venturi can therefore by used as an airspeed indicator; if some means of measuring the
pressure difference p; — ps is provided.



