
Fluids – Lecture 11 Notes 

1. Introduction to Compressible Flows 

2. Thermodynamics Concepts 

Reading: Anderson 7.1 – 7.2 

Introduction to Compressible Flows 

Definition and implications 

A compressible flow is a flow in which the fluid density ρ varies significantly within the 
flowfield. Therefore, ρ(x, y, z) must now be treated as a field variable rather than simply 
a constant. Typically, significant density variations start to appear when the flow Mach 
number exceeds 0.3 or so. The effects become especially large when the Mach number 
approaches and exceeds unity. 

The figure shows the behavior of a moving Lagrangian Control Volume (CV) which by 
definition surrounds a fixed mass of fluid m. In incompressible flow the density ρ does not 
change, so the CV’s volume V = m/ρ must remain constant. In the compressible flow 
case, the CV is squeezed or expanded significantly in response to pressure changes, with ρ 
changing in inverse proportion to V. Since the CV follows the streamlines, changes in the 
CV’s volume must be accompanied by changes in the streamlines as well. Above Mach 1, 
these volumetric changes dominate the streamline pattern. 
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Many of the relations developed for incompressible (i.e. low speed) flows must be revisited 
and modified. For example, the Bernoulli equation is no longer valid, 

1 
p + ρV 2 6= constant 

2 

since ρ = constant was assumed in its derivation. However, concepts such as stagnation 
pressure po are still usable, but their definitions and relevant equations will be different from 
the low speed versions. 

Some flow solution techniques used in incompressible flow problems will no longer be appli­
cable to compressible flows. In particular, the technique of superposition will no longer be 
generally applicable, although it will still apply in some restricted situations. 

Perfect gas 

A perfect gas is one whose individual molecules interact only via direct collisions, with no 
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other intermolecular forces present. For such a perfect gas, p, ρ, and the temperature T are 
related by the following equation of state 

p = ρRT 

where R is the specific gas constant. For air, R = 287J/kg-K◦ . It is convenient at this point 
to define the specific volume as the limiting volume per unit mass, 

ΔV 1 
υ ≡ lim = 

ΔV→0 Δm ρ 

which is merely the reciprocal of the density. In general, the nomenclature “specific X” is 
synonymous with “X per unit mass”. The equation of state can now be written as 

pυ = RT 

which is the more familiar thermodynamic form.


The appearance of the temperature T in the equation of state means that it must vary

within the flowfield. Therefore, T (x, y, z) must be treated as a new field variable in addition

to ρ(x, y, z). In the moving CV scenario above, the change in the CV’s volume is not only

accompanied by a change in density, but by a change in temperature as well.


The appearance of the temperature also means that thermodynamics will need to be ad­

dressed. So in addition to the conservation of mass and momentum which were employed in

low speed flows, we will now also need to consider the conservation of energy. The following

table compares the variables and equations which come into play in the two cases.


Incompressible flow 

variables: ~V , p 
−→ 

equations: mass , momentum 

Thermodynamics Concepts 

Internal Energy and Enthalpy 

Compressible flow 

V , p , ρ , T 
−→ 

mass , momentum , energy , state 

The law of conservation of energy involves the concept of internal energy , which is the sum 
of the energies of all the molecules of a system. In fluid mechanics we employ the specific 

internal energy , denoted by e, which is defined for each point in the flowfield. A related 
quantity is the specific enthalpy , denoted by h, and related to the other variables by 

h = e + pυ 

The units of e and h are (velocity)2 , or m2/s2 in SI units.


For a calorically perfect gas, which is an excellent model for air at moderate temperatures,

both e and h are directly proportional to the temperature. Therefore we have


e = cv T 

h = cp T 

where cv and cp are specific heats at constant volume and constant pressure, respectively. 

h − e = pυ = (cp − cv)T 
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and comparing to the equation of state, we see that 

cp − cv = R 

Defining the ratio of specific heats , γ ≡ cp/cv, we can with a bit of algebra write 

1 
cv = R 

γ − 1 
γ 

cp = R 
γ − 1 

so that cv and cp can be replaced with the equivalent variables γ and R. For air, it is handy 
to remember that 

1 γ 
γ = 1.4 

γ − 1 
= 2.5 

γ − 1 
= 3.5 (air) 

First Law of Thermodynamics 

Consider a thermodynamic system consisting of a small Lagrangian control volume (CV) 
moving with the flow. 

time t + dt 
e + de 

e 
h 

h + dh 

wδ 
δq 

time t ... 

... 

Over the short time interval dt, the CV undergoes a process where it receives work δw and 
heat δq from its surroundings, both per unit mass. This process results in changes in the 
state of the CV, described by the increments de, dh, dp . . . The first law of thermodynamics 
for the process is 

δq + δw = de (1) 

This states that whatever energy is added to the system, whether by heat or by work, it 
must appear as an increase in the internal energy of the system. 

The first law only makes a statement about de. We can deduce the changes in the other 
state variables, such as dh, dp, . . . if we assume special types of processes. 

1. Adiabatic process, where no heat is transferred, or δq = 0. This rules out heating of 
the CV via conduction though its boundary, or by combustion inside the CV. 

2. Reversible process, no dissipation occurs, implying that work must be only via volu­
metric compression, or dw = −p dυ. This rules out work done by friction forces. 

3. Isentropic process, which is both adiabatic and reversible, implying −p dυ = de. 
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... 

... 

Isentropic relations 

Aerodynamic flows are effectively inviscid outside of boundary layers. This implies they have 
negligible heat conduction and friction forces, and hence are isentropic. Therefore, along the 
pathline followed by the CV in the figure above, the isentropic version of the first law applies. 

−p dυ = de (2) 

This relation can be integrated after a few substitutions. First we note that 

1 dρ 
dυ = d = − 

ρ ρ2 

and with the perfect gas relation 

1 
de = cv dT = R dT 

γ − 1 

the isentropic first law (2) becomes 

dρ 1 
p = R dT 

ρ2 γ − 1 
dρ 1 ρR 

= dT 
ρ γ − 1 p 
dρ 1 dT 

= 
ρ γ − 1 T 

The final form can now be integrated from any state 1 to any state 2 along the pathline. 

1 
ln ρ = ln T + const. 

γ − 1 

ρ = const. × T 1/(γ−1) 

� 
T2 
�1/(γ−1) ρ2 

= (3) 
ρ1 T1 

From the equation of state we also have 

ρ2 p2 T1 
= 

ρ1 p1 T2 

which when combined with (3) gives the alternative isentropic relation 

p2 
� 

T2 
�γ/(γ−1) 

= (4) 
p1 T1 
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