
Fluids – Lecture 10 Notes 

1. Substantial Derivative 

2. Recast Governing Equations 

Reading: Anderson 2.9, 2.10 

Substantial Derivative 

Sensed rates of change 

The rate of change reported by a flow sensor clearly depends on the motion of the sensor. 
For example, the pressure reported by a static-pressure sensor mounted on an airplane in 
level flight shows zero rate of change. But a ground pressure sensor reports a nonzero rate 
as the airplane rapidly flies by a few meters overhead. The figure illustrates the situation. 
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Note that although the two sensors measure the same instantaneous static pressure at the 
same point (at time t = t o), the measured time rates are different. 

dp1 dp2 
p1(t o) = p2(t o) but (t o) 6= (t o)

dt dt 

Drifting sensor 

We will now imagine a sensor drifting with a fluid element . In effect, the sensor follows the 
element’s pathline coordinates x s(t), ys(t), z s(t), whose time rates of change are just the 
local flow velocity components 

dx s dys dz s 
= u(x s, ys, z s, t) , = v(x s, ys, z s, t) , = w(x s, ys, z s, t)

dt dt dt 
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Consider a flow field quantity to be observed by the drifting sensor, such as the static pressure 
p(x, y, z, t). As the sensor moves through this field, the instantaneous pressure value reported 
by the sensor is then simply 

ps(t) = p (x s(t), ys(t), z s(t), t) (1) 
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This ps(t) signal is similar to p2(t) in the example above, but not quite the same, since the 

2 sensor moves in a straight line relative to the wing rather than following a pathline like 
the ps sensor. 

Substantial derivative definition 

The time rate of change of ps(t) can be computed from (1) using the chain rule. 

dps ∂p dx s ∂p dys ∂p dz s ∂p 
= + + + 

dt ∂x dt ∂y dt ∂z dt ∂t 

But since dx s/dt etc. are simply the local fluid velocity components, this rate can be ex­
pressed using the flowfield properties alone. 

dps ∂p ∂p ∂p ∂p Dp 
= + u + v + w ≡ 

dt ∂t ∂x ∂y ∂z Dt 

The middle expression, conveniently denoted as Dp/Dt in shorthand, is called the substantial 

derivative of p. Note that in order to compute Dp/Dt, we must know not only the p(x, y, z, t) 
field, but also the velocity component fields u, v, w(x, y, z, t). 

Although we used the pressure in this example, the substantial derivative can be computed 
for any flowfield quantity (density, temperature, even velocity) which is a function of x, y, z, t. 

D( ) ∂( ) ∂( ) ∂( ) ∂( ) ∂( ) 
≡ + u + v + w = + ~V · ∇( ) 

Dt ∂t ∂x ∂y ∂z ∂t 

The rightmost compact D/Dt definition contains two terms. The first ∂/∂t term is called 

Vthe local derivative. The second ~ · ∇ term is called the convective derivative. In steady 
flows, ∂/∂t = 0, and only the convective derivative contributes. 

Recast Governing Equations 

All the governing equations of fluid motion which were derived using control volume concepts 
can be recast in terms of the substantial derivative. We will employ the following general 
vector identity 

∇ · (a~v) = ~v · ∇a + a∇·~v 

which is valid for any scalar a and any vector ~v. 

Continuity equation 

Applying the above vector identity to the divergence form continuity equation gives 

∂ρ 
+ ∇ · 

� 

ρ ~V 
� 

= 0 
∂t 

∂ρ 
+ ~V · ∇ρ + ρ∇· ~V = 0 

∂t 
Dρ 

Dt 
+ ρ∇· ~V = 0 (2) 

The final result above is called the convective form of the continuity equation. A physical 
interpretation can be made if it’s written as follows. 
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1 Dρ 
− = ∇ · V 

ρ Dt 
−fractional density rate = velocity divergence 

or . . . fractional volume rate = velocity divergence 

For a fluid element of given mass, the volume must vary as 1/density, which gives the second 
interpretation above. Both interpretations are illustrated in the left figure below, where the 
fluid element expands when it flows through a flowfield region where ∇· V > 0. In low 
speed flows and in liquid flows the density is essentially constant, so that Dρ/Dt = 0 and 

by implication ∇· ~V = 0. 

Momentum equation 

The divergence form of the x-momentum equation is 

∂(ρu)
+ ∇ · 

� 

ρu~
� 

= −
∂p 

+ ρgx + (F x)viscous V 
∂t ∂x 

Applying the vector identity again, and also cancelling some terms by use of the continuity 
equation (2), produces the convective form of the momentum equation. The y- and z-
momentum equations are also derived the same way. 

Du ∂p 
ρ = − + ρgx + (F x)viscous (3) 

Dt ∂x 
Dv ∂p 

ρ = − + ρgy + (F y)viscous (4) 
Dt ∂y 
Dw ∂p 

ρ = − + ρgz + (F z)viscous (5) 
Dt ∂z 

The Du/Dt etc. substantial derivatives are recognized as the acceleration components expe­
rienced by a fluid element. This leads to a simple physical interpretation or these equations 
as Newton’s law applied to a fluid element of unit volume. 

mass/volume × acceleration = total force/volume 

The element’s mass/volume is simply the density ρ, and the total force/volume consists of 
the buoyancy-like pressure gradient force, the gravity force, and the viscous force. 
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