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Fluids – Lecture 9 Notes 

1. General Wings 

Reading: Anderson 5.3.2, 5.3.3 

General Wings 

General circulation distribution and downwash 

The assumption of elliptic loading is too restrictive for the design of practical wings. A more 
general circulation distribution can be conveniently described by a Fourier sine series, in 
terms of the angle coordinate θ defined earlier. 

N 

Γ(θ) = 2bV
∞ 

An sin nθ 
n=1 

This is a superposition of individual weighted component shapes sin nθ, shown in the fig­
ure plotted versus the physical coordinate y. The induced angle for this Γ distribution is 

Γ sin θ A2 sin 2θ A3 sin 3θA12bV 

y y y ...y 

evaluated by first noting that 

NdΓ dΓ � 

dy = dθ = 2bV
∞ 

nAn cos nθ dθ 
dy dθ n=1 

which is then substituted into the induced angle integral. 

N1 
� b/2 dΓ dy 1 �

� π cos nθ 
αi = = nAn dθ 

4πV
∞ 

−b/2 dy yo − y π 0 cos θ − cos θon=1 

This integral was evaluated earlier, which gives the final result. 

N 
� sin nθo

αi(θo) = nAn 
sin θon=1 

Each component of Γ(θ) has a corresponding component of αi(θ). The leading n = 1 term 

1 
sin 2θ A2 

sin 3θα i A 1 A sin θ 3 sin θ 

...y y y y 

is the same as the elliptic loading case, with the expected uniform induced angle. The 
remaining terms deviate the loading away from the elliptic distribution, and deviate the 
downwash away from the uniform distribution. 
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Lift 

We can now compute the lift for the general circulation distribution by integrating it across 
the span. 

� b/2 

L = ρ V
∞

Γ(y) dy 
−b/2 

The integral is most easily evaluated using the θ coordinate. With the substitutions 

b 
y = cos θ 

2 
b 

dy = − sin θ dθ 
2 

we then have 
N � π 

� 

� b 
L = ρ V

∞ 
2bV

∞ 
An sin nθ sin θ dθ 

2 0 n=1 

All the integrals inside the summation are readily evaluated using the orthogonality property 
of the sine functions. 

� π π/2 (if n = m)
sin nθ sin mθ dθ = 

0 0 (if n 6= m) 

For our case we have m = 1, and then consider n = 1, 2, 3 . . . for each term. Clearly, the 
n = 1 integral evaluates to π/2, and the rest evaluate to zero. Therefore, 

π 
L = ρ V 2 b2 A1∞2 

C
b2 

L = 
1 

= πA1 = A1 πAR 
L 

ρ V 2 S S 
2 ∞ 

Only the leading n = 1 component of the circulation contributes to the lift. This is expected 
after examination of the component shapes for Γ(y), which shows that only the n = 1 shape 
has a nonzero area under it. 

Induced drag and span efficiency 

The induced drag is also evaluated by spanwise integration. 

D
� b/2 

i = ρ V
∞

Γ(y) αi(y) dy 
−b/2 

After switching from y to θ, and substituting for Γ(θ) and αi(θ), this evaluates to 

1 N �

� 

A
� � 1 � An 

�2 
2Di = πb2 

2 ∞ 1 + 2A2 + 3A2 + . . . NA2 = πb2 ρ V 2 A2ρ V 2 
2 3 N 2 ∞ 1 1 + n 

A1n=2 

Although only the A1 part of the circulation contributes to lift, all the An parts contribute 
towards increasing the induced drag. We therefore conclude that the elliptic load distribution 
gives the smallest induced drag for a given lift and span. 

A more convenient equation for the induced drag can be obtained by replacing A1 in terms 
of the lift. This gives 

(L/b)2 

Di = 
1 2 π 

[1 + δ]
ρ V

2 ∞ 
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where 
N � 

� An 
�2 

A
δ ≡ n 

1n=2 

can be thought of as a fractional induced drag penalty due to the presence of the higher 
n = 2, 3 . . . “non-elliptic” loading terms. It is traditional to define a span efficiency 

1 
e ≡ 

1 + δ 

so that the induced drag is finally given as 

(L/b)2 

Di = 
1 ρ V 2 π e 
2 ∞ 

The corresponding induced drag coefficient is then easily obtained. 

C
C2 

Di = L 

π e AR 

Because δ is the sum of squares and hence non-negative, the span efficiency must be e ≤ 1, 
and the actual induced drag is never less than the minimum drag corresponding to elliptic 
loading, for which δ = 0 and e = 1. 

Load distributions on typical planforms 

The figure shows three wing planforms with no twist (constant αgeom), along with their 
computed circulation distributions at some nonzero lift. Also shown is the elliptic component 
of the circulation 2bV

∞
A1 sin θ as a dotted line. The difference between the two curves is 

the remaining n = 2, 3 . . . terms, which produce a nonzero δ, and e < 1. Even the relatively 
crude constant-chord wing has an acceptable span efficiency, with only a 4% induced drag 
“penalty”. The loading on the double-taper wing is very nearly elliptic, and hence e ≃ 1 for 
this case. Clearly, the complexity of a curved elliptic planform is hardly warranted. 

e = 0.960 e = 0.989 e = 0.997 

constant chord double taper 

Γ Γ Γ 

simple taper, r=0.6 

θ1 sin 

Γ 

2bV A 

Effects of trailing edge flaps 

Deflection of a part-span trailing edge flap will usually cause a significant distortion in 
the load distribution, producing a significant increase in induced drag. The figure shows 
the constant-chord wing case, with a central flap deflected downward 15◦ . The loading is 
strongly non-elliptic, and the span efficiency has decreased to 0.840. Note also the strongly 
non-uniform downwash distribution resulting from this distorted loading. 

3 



� � 

θ1 sin 

Γ 

2bV A 

e = 0.840 

w 

deflected flap 

Lift slope reduction 

The downwash behind any finite wing modifies the wing’s lift slope. Consider the cℓ-angle 
relation at a typical spanwise location. 

cℓ = a0 (α + αaero − αi) 

For a nearly-elliptic loading, we have cℓ ≃ CL and αi ≃ CL/πeAR 

CL
giving CL = a0 α + αaero − 

a
πeAR 

0 
or CL = a0 

(α + αaero) = a (α + αaero)
1 + 

πeAR 

The lift slope is now 
dCL a0 

= ≡ a a0dα 1 + 
πeAR 

A common approximation is to assume that a0 = 2π and e ≃ 1, in which case 

2π 
a ≃ 

1 + 2/AR 

This slope a clearly decreases as AR is reduced. Low aspect ratio wings must therefore 
operate at higher angles of attack than high aspect ratio wings to reach the same CL. 

α 

CL 

a 

AR = 

AR = 5a0 

−αaero
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