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Review: Grad, etc. 

Pressure field 

Figure 1 shows a Control Volume or circuit placed in a pressure field p(x, y). To evaluate 
the pressure force on the CV, we need to examine the pressures on the CV faces. 
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Figure 1: Pressure field and Control Volume. 

Pressure force – infinitesimal rectangular CV 

Let us now assume the CV is an infinitesimal rectangle, with dimensions dx and dy. We 
wish to compute the net pressure force (per unit z depth) on this CV, 

′ F = (p ̂−d~ n) ds 

where ds is the CV side arc length, either dx or dy depending on the side in question. As 
shown in Figure 2, the pressures across the opposing faces 1,2 and 3,4 are related by using 
the local pressure gradients ∂p/∂x and ∂p/∂y. 
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Figure 2: Infinitesimal CV surface pressures and normal vectors.


The pressure force is then computed by evaluating the integral as a sum over the four faces.
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∂p ∂p 
= ı̂ + ̂ dx dy 

∂x ∂y 

′ −d~F = (∇p) dx dy (1) 

where ∇p is a convenient shorthand for the gradient expression in the parentheses. This 
final result for any 2-D infinitesimal CV can be stated as follows: 

2-D : -d(force/depth) = (pressure gradient) × d(area) (2) 

For a 3-D infinitesimal “box” CV, a slightly more involved analysis gives 

−d~ ∂p ∂p ∂p ˆF = ı̂ + ̂ + k dx dy dz = (∇p) dx dy dz (3) 
∂x ∂y ∂z 

3-D : -d(force) = (pressure gradient) × d(volume) (4) 

Pressure force – finite CV 

We now wish to integrate the pressure gradient over a finite CV. 

∂p ∂v 
(∇p) dx dy = ı̂ + ̂ dx dy 

∂x ∂y 

As shown in Figure 3, this is equivalent to summing the pressure forces on all the infinitesimal 
CVs in the finite CV’s interior. We then note that the contributions of all the interior faces 

Δ)( )( dsinterior face integrations cancel= Sum )( dsp n p np dx dy 

Figure 3: Summation of pressure gradient over interior of a finite CV 

cancel, since these have directly opposing n̂ normal vectors, leaving only the boundary faces 
in the overall summation which the give the net pressure force on the CV. 

(∇p) dx dy = (pn̂) ds 
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This general result is known as the Gradient Theorem, and it applies to any scalar field f , 
not just fluid pressure fields. The general Gradient Theorem in 3-D is 

∇f dx dy dz = © f n̂ dA 
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dA 

dx dy dz 

Δf 

f 

where the volume integral is over the interior of the CV, and the area integral is over the 
surface of the CV. 

Constant pressure field contribution 

It is useful to note that adding a constant pressure pC to the pressure field p(x, y) has no net 

effect on the calculation of ~ . Because the grad operation involves derivatives, any constant F ′ 

component in p will disappear, e.g. 

∇ (p + pC) = ∇p + ∇pC = ∇p (5) 

Similarly, the normal vector integral of a constant around a closed CV is zero. 

pC n ds = 0ˆ

These properties can be used to see the important feature of a pressure field. We can take 
the four face pressures shown in Figure 1 and define their average 

p
1 

avg = (p1 + p2 + p3 + p4)
4 

and subtract this constant pavg from each pressure to give the local deviations Δp, as shown 
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p n =( ) np n 
in Figure 4. 

Figure 4: Average pressure subtracted out to give local pressure force deviations 

From (5) we see that 

∇ (Δp) = ∇p 

so that these pressure deviations have exactly the same ~ as the full pressure. Removal of F ′ 

the large constant pavg makes it easier to visualize the net magnitude and direction of the 
pressure force acting on the CV. 
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