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Fluids – Lecture 7 Notes 

1. Momentum Flow 

2. Momentum Conservation 

Reading: Anderson 2.5 

Momentum Flow 

Before we can apply the principle of momentum conservation to a fixed permeable control 
volume, we must first examine the effect of flow through its surface. When material flows 
through the surface, it carries not only mass, but momentum as well. The momentum flow 

can be described as 

−→ −→ 

momentum flow = (mass flow) × (momentum /mass) 

where the mass flow was defined earlier, and the momentum/mass is simply the velocity 

vector ~V . Therefore 

−→ � � 

˙ ~ ~ n A ~ Vmomentum flow = m V = ρ V · ˆ V = ρ V n A ~

~ n as before. Note that while mass flow is a scalar, the momentum flow is a where V n = V · ˆ
vector, and points in the same direction as ~V . The momentum flux vector is defined simply 
as the momentum flow per area. 

−→ 

momentum flux = ρ V n V 
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Momentum Conservation 

Newton’s second law states that during a short time interval dt, the impulse of a force ~F 
Papplied to some affected mass, will produce a momentum change d~

a in that affected mass. 
When applied to a fixed control volume, this principle becomes 

V 
. 

P(t) P 

F 

out. 
Pin 

d~P a ~= F (1) 
dt 

P ~̇d ~
~̇ ~+ P out − P in = F (2) 

dt 
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In the second equation (2), ~P is defined as the instantaneous momentum inside the control 
volume. 

P (t) ≡ ρ ~~ V dV 

~̇The P out is added because mass leaving the control volume carries away momentum provided 

F , which ~ ~̇by ~ P alone doesn’t account for. The P in is subtracted because mass flowing into 
the control volume is incorrectly accounted in ~P , and hence must be discounted. Both terms 
are evaluated by a surface integral of the momentum flux over the entire boundary. 

~̇ ~̇ ~ n V dA P out − P in = © ρ V · ˆ ~

The sign of ~ n automatically accounts for both inlow and outflow. V · ˆ

Applied forces 

The force ~F consists of two types. 

Body forces. These act on fluid inside the volume. The most common example is the gravity 
force, along the gravitational acceleration vector ~g. 

Fgravity = ρ~g dV 

Surface forces. These act on the surface of the volume, and can be separated into pressure 
and viscous forces. �� 

~ n dA Fpressure = © −p ˆ

The viscous force is complicated to write out, and for now will simply be called ~Fviscous. 

gρ 
Fviscous 

Fviscous 

−pn 

−pn 

Integral Momentum Equation 

Substituting all the momentum, momentum flow, and force definitions into Newton’s second 
law (2) gives the Integral Momentum Equation. 

d 
V dV + © ρ V · ˆ ~ n dA + ρ~g dV + ~

viscous (3) ρ ~ ~ n V dA = ©−p ˆ F
dt 
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Along with the Integral Mass Equation, this equation can be applied to solve many problems 
involving finite control volumes. 

Differential Momentum Equation 

The pressure surface integral in equation (3) can be converted to a volume integral using the 
Gradient Theorem. �� ��� 

© p n̂ dA = ∇p dV 

The momentum-flow surface integral is also similarly converted using Gauss’s Theorem. This 
integral is a vector quantity, and for clarity the conversion is best done on each component 

V ˆseparately. After substituting ~ = u ı̂ + v ̂ + w k, we have 

© ρ V · ˆ ˆ V u dV~ n u ı̂ + v ̂ + w k dA = ı̂ ∇ · ρ ~

+ ̂ ∇ · ρ ~V v dV 

ˆ V w dV+ k ∇ · ρ ~

The x-component of the integral momentum equation (3) can now be written strictly in 
terms of volume integrals. 

V 
∂(ρu)

+ ∇ · 
� 

ρu~
� 

+ 
∂p 

− ρgx − (F x)viscous dV = 0 (4) 
∂t ∂x 

This relation must hold for any control volume whatsoever. If we place an infinitesimal 
control volume at every point in the flow and apply equation (4), we can see that the whole 
quantity in the brackets must be zero at every point. This results in the x-Momentum 

Equation 
∂(ρu)

+ ∇ · 
� 

ρu~
� 

= −
∂p 

+ ρgx + (F x)viscous (5) V 
∂t ∂x 

and the y- and z-Momentum Equations follow by the same process. 

∂(ρv)
+ ∇ · 

� 

ρv~
� 

= −
∂p 

+ ρgy + (F y)viscous (6) V 
∂t ∂y 

∂(ρw)
+ ∇ · 

� 

ρw~
� 

= −
∂p 

+ ρgz + (F z)viscous (7) V 
∂t ∂z 

These three equations are the embodiment of the Newton’s second law of motion, applied 
at every point in the flowfield. The steady flow version has the ∂/∂t terms omitted. 
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