
Fluids – Lecture 4 Notes 

1. Dimensional Analysis – Buckingham Pi Theorem 

2. Dynamic Similarity – Mach and Reynolds Numbers 

Reading: Anderson 1.7 

Dimensional Analysis 

Physical parameters 

A large number of physical parameters determine aerodynamic forces and moments. Specif­
ically, the following parameters are involved in the production of lift. 

Parameter Symbol Units 
Lift per span L′ mt−2


Angle of attack α —

Freestream velocity V

∞ 
lt−1


Freestream density ρ
∞ 

ml−3


Freestream viscosity µ
∞ 

ml−1t−1


Freestream speed of sound a
∞ 

lt−1


Size of body (e.g. chord) c l


For an airfoil of a given shape, the lift per span in general will be a function of the remaining 
parameters in the above list. 

′ L = f(α, ρ
∞
, V

∞
, c, µ

∞
, a

∞
) (1) 

In this particular example, the functional statement has N = 7 parameters, expressed in a 
total of K = 3 units (mass m, length l, and time t). 

Dimensionless Forms 

The Buckingham Pi Theorem states that this functional statement can be rescaled into an 
equivalent dimensionless statement 

¯Π1 = f( Π2, Π3 . . . ΠN−K ) 

having only N−K = 4 dimensionless parameters. These are called Pi products, since they 
are suitable products of the dimensional parameters. In the particular case of statement (1), 
suitable Pi products are: 
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∞ 

V
∞

Π
a

4 = = M
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∞ 

The dimensionless form of statement (1) then becomes


¯cℓ = f(α, Re, M
∞

) (2) 
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We see that the original 6 dimensional parameters which influence L′ has been reduced to 
only 3 dimensionless parameters which influence cℓ. 

Benefits of non-dimensionalization 

The reduction of parameter count is potentially a huge simplification. Consider an exaustive 
lift-measurement experiment where the effect of all parameters is to be determined. Let’s 
assume that in this experiment we need to give each parameter 5 distinct values in order 
to adequately ascertain its effect on the lift. If we work with the 6 dimensional parameters 
in statement (1), then the number of possible parameter combinations and experimental 
runs required is 56 = 15625 (!). But if we work with the 3 dimensionless parameters in 
statement (2), the number of parameter combinations and experimental runs is only 53 = 125, 
which is more than a hundredfold reduction in effort. Nondimensionalization is clearly a 
powerful technique for minimizing experimental effort. 

The benefits of non-dimensionalization also extend to theoretical work. Deducing a statement 
such as (2) at the outset can be useful to guide subsequent detailed analysis. Theoretical 
results are also usually more concise and clear when presented in dimensionless form. 

Derivation of dimensionless forms 

Anderson 1.7 has details on how the Pi product combinations can be derived for any complex 
situation using linear algebra. In many cases, however, the products can be obtained by 
physical insight, or perhaps by inspection. Several rules can be applied here: 

•	 Any parameter which is already dimensionless, such as α, is automatically one of the 
Pi products. 

•	 If two parameters have the same units, such as V
∞ 

and a
∞

, then their ratio (M
∞ 

in 
this case) will be one of the Pi products. 

•	 A power or simple multiple of a Pi product is an acceptable alternative Pi product. For 
example, (V

∞
/a

∞
)2 is an acceptable alternative to V

∞
/a

∞
, and ρ

∞
V 2 is an acceptable 

∞ 

2alternative to 1 ρ
∞
V 

∞ 
. Which particular forms are used is a matter of convention. 
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•	 Combinations of Pi products can replace the originals. For example, the 3rd and 4th 
products in the example could have been defined as 
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∞
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∞ 
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∞

Π
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∞ 

∞ 

which is workable alternative, but perhaps less practical, and certainly less traditional. 

Dynamic Similarity 

It is quite possible for two differently-sized physical situations, with different dimensional 
parameters, to nevertheless reduce to the same dimensionless description. The only require­
ment is that the corresponding Pi products have the same numerical values. 
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Airfoil flow example 

Consider two airfoils which have the same shape and angle of attack, but have different sizes 
and are operating in two different fluids. Let’s omit the ()

∞ 
subscript for clarity. 

Airfoil 1 (sea level) Airfoil 2 (cryogenic tunnel) 

c
a
µ
ρ
V
α1 = 5◦ 

1 = 210m/s 

1 = 1.2kg/m3 

1 = 1.8 × 10−5kg/m-s 

1 = 300m/s 

1 = 1.0m c
a
µ
ρ
V
α2 = 5◦ 

2 = 140m/s 

2 = 3.0kg/m3 

2 = 1.5 × 10−5kg/m-s 

2 = 200m/s 

2 = 0.5m 

Airfoil 1 − Sea level air Airfoil 2 − Cryogenic tunnel 

The Pi products evaluate to the following values. 

Airfoil 1 Airfoil 2 

M

α1 = 5◦


Re1 = 1.4 × 107


1 = 0.7
 M

α2 = 5◦ 

Re2 = 1.4 × 107 

2 = 0.7 

¯Since these are also the arguments to the f function, we conclude that the cℓ values will be 
the same as well. 

¯ ¯f(α1, Re1, M1) = f(α2, Re2, M2) 

cℓ1 
= cℓ2 

When the nondimensionalized parameters are equal like this, the two situations are said to 
have dynamic similarity. One can then conclude that any other dimensionless quantity must 
also match between the two situations. This is the basis of wind tunnel testing, where the 
flow about a model object duplicates and can be used to predict the flow about the full-
size object. The prediction is correct only if the model and full-size objects have dynamic 
similarity. 
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