
Fluids – Lecture 3 Notes 

1. 2-D Aerodynamic Forces and Moments 

2. Center of Pressure 

3. Nondimensional Coefficients 

Reading: Anderson 1.5 – 1.6 

Aerodynamics Forces and Moments 

Surface force distribution 

The fluid flowing about a body exerts a local force/area (or stress) f~ on each point of the 
body. Its normal and tangential components are the pressure p and the shear stress τ . 
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The figure above greatly exaggerates the magnitude of the τ stress component just to make 
it visible. In typical aerodynamic situations, the pressure p (or even the relative pressure 

p − p∞) is typically greater than τ by at least two orders of magnitude, and so f~ is very 
nearly perpendicular to the surface. But the small τ often significantly contributes to drag, 
so it cannot be neglected entirely. 

The stress distribution f~ integrated over the surface produces a resultant force ~R, and also 
a moment M about some chosen moment-reference point. In 2-D cases, the sign convention 
for M is positive nose up, as shown in the figure. 

Force components 

The resultant force ~R has perpendicular components along any chosen axes. These axes are 
arbitrary, but two particular choices are most useful in practice. 
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Freestream Axes: The ~R components are the drag D and the lift L, parallel and perpendic­
ular to ~V∞. 

Body Axes: The ~R components are the axial force A and normal force N , parallel and 
perpendicular to the airfoil chord line. 

If one set of components is computed, the other set can then be obtained by a simple axis 
transformation using the angle of attack α. Specifically, L and D are obtained from N and 
A as follows. 

L = N cos α − A sin α 

D = N sin α + A cos α 

Force and moment calculation 

A cylindrical wing section of chord c and span b has force components A and N , and mo­
ment M . In 2-D it’s more convenient to work with the unit-span quantities, with the span 
dimension divided out. 

′ ′ ′ A ≡ A/b N ≡ N/b M ≡ M/b 
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On the upper surface, the unit-span force components acting on an elemental area of width 
dsu are 

′ dN = (−pu cos θ − τu sin θ) dsuu 
′ dA = (−pu sin θ + τu cos θ) dsuu 

And on the lower surface they are 

′ dN ℓ = (pℓ cos θ − τℓ sin θ) dsℓ 

′ dA ℓ = (pℓ sin θ + τℓ cos θ) dsℓ 

Integration from the leading edge to the trailing edge points produces the total unit-span 
forces. 

TE 
� 

TE 

′ ′ ′ N = dN + dN ℓu 
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′ ′ ′ A = dA + dA ℓu 
LE LE 
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The moment about the origin (leading edge in this case) is the integral of these forces, 
weighted by their moment arms x and y, with appropriate signs. 
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′ ′ ′ ′ ′ M = −x dN + −x dN ℓ + y dA + y dA 
LE u u ℓ 

LE LE LE LE 

From the geometry, we have 

dy 
ds cos θ = dx ds sin θ = −dy = − dx 

dx 

which allows all the above integrals to be performed in x, using the upper and lower shapes 
of the airfoil yu(x) and yℓ(x). Anderson 1.5 has the complete expressions. 

Simplifications 

In practice, the shear stress τ has negligible contributions to the lift and moment, giving the 
following simplified forms. 

′ 

c � c dyℓ dyu
L = cos α (pℓ − pu) dx + sin α pℓ − pu dx 

0 0 dx dx 
� � � � �� 

′ 

c dyu dyℓ
M = pu x + yu − pℓ x + yℓ dx 

LE 

0 dx dx 

A somewhat less accurate but still common simplification is to neglect the sin α term in L′ , 
and the dy/dx terms in M ′ . 

c 
′ L ≃ (pℓ − pu) dx 

0 
c 

′ M ≃ −(pℓ − pu) x dx 
LE 

0 

The shear stress τ cannot be neglected when computing the drag D′ on streamline bodies 
such as airfoils. This is because for such bodies the integrated contributions of p toward D′ 

tend to mostly cancel, leaving the small contribution of τ quite significant. 

Center of Pressure 

Definition 

The value of the moment M ′ depends on the choice of reference point. Using the simplified 
form of the MLE integral, the moment Mref for an arbitrary reference point xref is 

c 
′ = −(pℓ − pu) (x − xref ) dx Mref 

0 
′ ′ = M
LE 

+ L xref 

This can be positive, zero, or negative, depending on where xref is chosen, as illustrated in 
the figure. 

At one particular reference location xcp, called the center of pressure, the moment is defined 
to be zero. 

′ ′ ′ Mcp = M + L xcp ≡ 0
LE 

′ ′ xcp = −M
LE

/L 
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The center of pressure asymptotes to +∞ or −∞ as the lift tends to zero. This awkward 
situation can easily occur in practice, so the center of pressure is rarely used in aerodynamics 
work. 

For reasons which will become apparent when airfoil theory is studied, it is advantageous 
to define the “standard” location for the moment reference point of an airfoil to be at its 
quarter-chord location, or xref = c/4. The corresponding standard moment is usually written 
without any subscripts. 

c 
′ ′ ≡ M = −(pℓ − pu) (x − c/4) dx Mc/4 

0 

Aerodynamic Conventions 

As implied above, the aerodynamicist has the option of picking any reference point for the 
moment. The lift and the moment then represent the integrated pl−pu distribution. Consider 
two possible representations: 

1. A resultant lift L′ acts at the center of pressure x = xcp. The moment about this 
′point is zero by definition: Mcp = 0. The xcp location moves with angle of attack in a 

complicated manner. 

2. A resultant lift L′ acts at the fixed quarter-chord point x = c/4. The moment about 
′this point is in general nonzero: Mc/4 6= 0. 

′The figure shows how the L′ , M , and xcp change with angle of attack for a typical cambered 
airfoil. Note that with representation 1, the xcp location moves off the airfoil and tends to 
+∞ as L′ approaches zero. Fixing the moment reference point, as in representation 2, is a 
simpler and preferable approach. Choosing the quarter-chord location for this is especially 
attractive, since M ′ then shows little or no dependence on the angle of attack. This surprising 
fact will come from a more detailed airfoil analysis later in the course. 
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Nondimensional Coefficients 

The forces and moment depend on a large number of geometric and flow parameters. It 
is often advantageous to work with nondimensionalized forces and moment, for which most 
of these parameter dependencies are scaled out. For this purpose we define the following 
reference parameters: 

Reference area: S 
Reference length: ℓ 
Dynamic pressure: q∞ = 1 

2
ρV 2 

∞ 

The choices for S and ℓ are arbitrary, and depend on the type of body involved. For aircraft, 
traditional choices are the wing area for S, and the wing chord or wing span for ℓ. The 
nondimensional force and moment coefficients are then defined as follows: 

L 
Lift coefficient: CL ≡ 

q∞S 

D 
Drag coefficient: CD ≡ 

q∞S 

M 
Moment coefficient: CM ≡ 

q∞Sℓ 

For 2-D bodies such as airfoils, the appropriate reference area/span is simply the chord c, and 
the reference length is the chord as well. The local coefficients are then defined as follows. 

L′ 

Local Lift coefficient: cℓ ≡ 

D

q∞ c 
′ 

Local Drag coefficient: cd ≡ 

M

q∞ c 
′ 

Local Moment coefficient: cm ≡ 
q∞ c2 

These local coefficients are defined for each spanwise location on a wing, and may vary across 
the span. In contrast, the CL, CD, CM are single numbers which apply to the whole wing. 
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