
Introduction to Computers and
Programming

Prof. I. K. Lundqvist

Lecture 9
April 7 2004

So far …

• Data structures
• Algorithms

“Just how good is my algorithm?”

3

Complexity Analysis

T
im

e
(s

ec
on

ds
)

60
50
40
30
20
10

0
1 2 3 4 5

O(C)

O(n2)

“Just how good is my algorithm?”

4

In-class Exercise

and calculates the sum of
all integers 1..N

• Best case vs. worst case
• Storage vs. Computation time
• Computing the computation time
• Big-O notation

• Write a procedure that reads an
integer N

5

Code Comparison

linear time?
with Ada.Integer_Text_Io, Ada.Text_Io;
use Ada.Integer_Text_Io, Ada.Text_Io;

procedure CalcSum is
N : Integer;
Total_Sum : Integer;

begin
Put_Line("Enter an Integer: ");
Get(N);
Total_Sum := 0;
for I in 1..N loop

Total_Sum := Total_Sum + I;
;

Put(Total_Sum);
end;

6

Code Comparison

with Ada.Integer_Text_Io, Ada.Text_Io;
use Ada.Integer_Text_Io, Ada.Text_Io;

procedure Calcsum is
N : Integer;
Total_Sum : Integer;

begin
Put_Line("Enter an Integer: ");
Get(N);
Total_Sum := 0;
Total_Sum := (N * (N + 1)) / 2;
Put(Total_Sum);

end;

N*(N+1)
2

• How many have a solution that runs in

end loop

• How many have a solution that runs in
constant time?

7

Complexity Analysis

: rate at which storage or time
grows as a function of the problem size

: describes the
inherent complexity of a program,
independent of machine and compiler
– Idea

can be described as a simple proportionality to
some known function.

8

Common Notations for Big-O

M)

N)

Or a combination of these

constant time or space

• Complexity

– Growth depends on compiler, machine, …

• Asymptotic analysis

: as problem size grows, the complexity

• O(1)

• O(N)

• O(log N)

• O(N

• O(M

9

O(1)

of what input we give to the algorithm

•
•
• …

10

O(N)

elements to find that the element we
are looking for does not exist

•
does not exist

•
size N where a value does not exist

• Constant time or space, independently

• Examples:
Access element in an array
Retrieve the first element in a list

• We have to search through all existing

• Examples:
Searching for element in a list that

Searching through a Binary Tree of

11

O(log N)

•

•
search

•

into O(log N)

12

Binary Search

How many elements are examined in worst case?

10 11 14 17 21 33 55 6257 71 87 89 91 93 95 97

1 2 3 4 5 6 7 98

Example, a full balanced Binary Search Tree

Can eliminate half of the BST every time the

Any algorithm that eliminates a large portion
of the data set at each iteration is generalized

10 11 12 13 14 15 16

• Ex?

13

Binary Search
Input:

Array to search, element to search for
Output:

Index if element found, -1 otherwise
Algorithm:

Set Return_Index to -1;
Set Current_Index to (UB + LB) /2

Loop
if the LB > UB

Exit;

Return_Index := Current_Index
Exit;

LB := Current_Index +1
else

Return Return_Index

14

O(NM)
N := 1;

while N > 0 loop
Put();
Get(N);
X := 0;

for I1 in 1..N loop
for I2 in 1..N loop

for I3 in 1..N loop
for I4 in 1..N loop

for I5 in 1..N loop
X := X + 1;

;
;

;
;

;
Put(X);
New_Line;
;

if Input_Array(Current_Index) = element

if Input_Array(Current_Index) < element

UB := Current_Index - 1

"How many repetions? "

end loop
end loop

end loop
end loop

end loop

end loop

15

O(MN)

– f(0) = 1
– f(1) = 1
– f(n+2) = f(n) + f(n+1) ∀ n≥0

2N calculations

16

Big-O

1 and largest N2
number in a list and generate a new list of

1 and N2

• Example: Fibonacci algorithm

• O(N+M)
– Sequential and unrelated tasks
– Ex: to find the smallest N

all the numbers in between N

• O(N*M)
– Nesting of tasks
– Ex: initializing a n-by-m matrix

17

Asymptotic Analysis: Big-O

Definition:T(n) = O(f(n)) – “T of n is in Big-Oh of f of n”

c and n0 such that:
T(n) ≤ cf(n) for all n ≥ n0

: The algorithm is in O(n2) in [best, average, worst] case.

Meaning: For all data sets big enough (i.e., n>n0), the algorithm
always executes in less than cf(n
case.

Big-O is said to describe an “upper bound

18

Big-O Examples

Finding value X in an array (average cost).

T(n) = csn/2.

For all values of n > 1, csn/2 <= csn.

Therefore, by the definition, T(n) is in O(n) for
n0 = 1 and c = cs.

T(n) = O(f(n)) iff
T(n) ≤ cf(n) for all n ≥ n0

• Mathematical concept that expresses
“how good” or “how bad” an algorithm is

iff there are constants

Usage

) steps in [best, average, worst]

” on the complexity.

19

Big-O Example

T(n) = c1n2 + c2n in average case.

c1n2 + c2n <= c1n2 + c2n2 <= (c1 + c2)n2 for
all n > 1.

T(n) <= cn2 for c = c1 + c2 and n0 = 1.

Therefore, T(n) is in O(n2) by the definition

T(n) = O(f(n)) iff
T(n) ≤ cf(n) for all n ≥ n0

Big-O Simplifications

O(2*N) Same as O(N)
O(5*3N) Same as O(3N)

O(4711) Same as O(1)

O(N+1) Reduces to O(N)

O(N2+logN) Reduces to O(N2)

O(N*logN+2N+50000) Reduces to O(2N)

20

21

Big-O Simplifications

Same asO(N*M+N2)

Same asO(N2logP+N)

Reduces toO(5*N3

Same asO(N+P+Q) O(N+P+Q)

O(5*N3+2P+Q*R)

O(N2logP+N)

O(N*M+N2)

22

Faster Computer or Algorithm?
The old computer processes 10,000
instructions per hour
What happens when we buy a computer
10 times faster?

----­16132n

3.16223702n2

7.371,8422505n log n

105,00050020n

1010,0001,00010n

n’/nn’nT(n)

+ 7N+ 2P+Q*R)

