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So far … 

• Data structures 
• Algorithms 



“Just how good is my algorithm?”
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Complexity Analysis 
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“Just how good is my algorithm?” 
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In-class Exercise 

and calculates the sum of 
all integers 1..N 

• Best case vs. worst case 
• Storage vs. Computation time 
• Computing the computation time 
• Big-O notation 

• Write a procedure that reads an 
integer N 



5 

Code Comparison 

linear time? 
with Ada.Integer_Text_Io, Ada.Text_Io;
use Ada.Integer_Text_Io, Ada.Text_Io; 

procedure CalcSum is 
N : Integer;
Total_Sum : Integer;

begin
Put_Line("Enter an Integer: ");
Get(N);
Total_Sum := 0;
for I in 1..N loop

Total_Sum := Total_Sum + I;
;

Put(Total_Sum);
end; 
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Code Comparison 

with Ada.Integer_Text_Io, Ada.Text_Io;
use Ada.Integer_Text_Io, Ada.Text_Io; 

procedure Calcsum is 
N : Integer;
Total_Sum : Integer; 

begin
Put_Line("Enter an Integer: ");
Get(N);
Total_Sum := 0;
Total_Sum := (N * (N + 1)) / 2;
Put(Total_Sum);

end; 

N*(N+1) 
2 

• How many have a solution that runs in 

end loop

• How many have a solution that runs in 
constant time? 
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Complexity Analysis 

: rate at which storage or time 
grows as a function of the problem size 

: describes the 
inherent complexity of a program, 
independent of machine and compiler 
– Idea

can be described as a simple proportionality to 
some known function. 
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Common Notations for Big-O 

M) 

N) 

Or a combination of these 

constant time or space 

• Complexity

– Growth depends on compiler, machine, … 

• Asymptotic analysis

: as problem size grows, the complexity 

• O(1)  

• O(N)  

• O(log N)  

• O(N

• O(M
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O(1) 

of what input we give to the algorithm 

• 
• 
• …  
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O(N) 

elements to find that the element we 
are looking for does not exist 

• 
does not exist 

• 
size N where a value does not exist 

• Constant time or space, independently 

• Examples:  
Access element in an array 
Retrieve the first element in a list 

• We have to search through all existing 

• Examples:  
Searching for element in a list that 

Searching through a Binary Tree of 
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O(log N) 

• 

• 
search 

• 

into O(log N) 
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Binary Search 

How many elements are examined in worst case? 

10 11 14 17 21 33 55 6257 71 87 89 91 93 95 97 

1 2 3 4 5 6 7 98 

Example, a full balanced Binary Search Tree 

Can eliminate half of the BST every time the 

Any algorithm that eliminates a large portion 
of the data set at each iteration is generalized 

10 11 12 13 14 15 16  



• Ex?
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Binary Search 
Input:

Array to search, element to search for
Output:

Index if element found, -1 otherwise
Algorithm:

Set Return_Index to -1;
Set Current_Index to (UB + LB) /2 

Loop
if the LB > UB 

Exit; 

Return_Index := Current_Index
Exit; 

LB := Current_Index +1
else 

Return Return_Index 
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O(NM) 
N := 1;

while N > 0 loop
Put( );
Get(N);
X := 0; 

for I1 in 1..N loop
for I2 in 1..N loop

for I3 in 1..N loop
for I4 in 1..N loop

for I5 in 1..N loop
X := X + 1; 

; 
; 

; 
; 

;
Put(X);
New_Line; 
; 

if Input_Array(Current_Index) = element

if Input_Array(Current_Index) < element 

UB := Current_Index - 1 

"How many repetions? "

end loop
end loop

end loop
end loop

end loop

end loop
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O(MN) 

– f(0) = 1 
– f(1) = 1 
– f(n+2) = f(n) + f(n+1) ∀ n≥0 

2N calculations 
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Big-O 

1 and largest N2 
number in a list and generate a new list of 

1 and N2 

• Example: Fibonacci algorithm 

• O(N+M)  
– Sequential and unrelated tasks 
– Ex: to find the smallest N

all the numbers in between N

• O(N*M)  
– Nesting of tasks  
– Ex: initializing a n-by-m matrix 
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Asymptotic Analysis: Big-O 

Definition:T(n) = O(f(n)) – “T of n is in Big-Oh of f of n” 

c and n0 such that: 
T(n) ≤ cf(n) for all n ≥ n0 

: The algorithm is in O(n2) in [best, average, worst] case. 

Meaning: For all data sets big enough (i.e., n>n0), the algorithm 
always executes in less than cf(n
case. 

Big-O is said to describe an “upper bound
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Big-O Examples 

Finding value X in an array (average cost). 

T(n) = csn/2. 

For all values of n > 1, csn/2 <= csn. 

Therefore, by the definition, T(n) is in O(n) for 
n0 = 1 and c = cs. 

T(n) = O(f(n)) iff 
T(n) ≤ cf(n) for all n ≥ n0 

• Mathematical concept that expresses 
“how good” or “how bad” an algorithm is 

iff there are constants 

Usage

) steps in [best, average, worst] 

” on the complexity.  
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Big-O Example 

T(n) = c1n2 + c2n in average case. 

c1n2 + c2n <= c1n2 + c2n2 <= (c1 + c2)n2 for 
all n > 1. 

T(n) <= cn2 for c = c1 + c2 and n0 = 1. 

Therefore, T(n) is in O(n2) by the definition 

T(n) = O(f(n)) iff 
T(n) ≤ cf(n) for all n ≥ n0 

Big-O Simplifications


O(2*N) Same as O(N) 
O(5*3N) Same as O(3N) 

O(4711) Same as O(1) 

O(N+1) Reduces to O(N) 

O(N2+logN) Reduces to O(N2) 

O(N*logN+2N+50000) Reduces to O(2N) 

20 
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Big-O Simplifications 

Same asO(N*M+N2) 

Same asO(N2logP+N) 

Reduces toO(5*N3 

Same asO(N+P+Q) O(N+P+Q) 

O(5*N3+2P+Q*R) 

O(N2logP+N) 

O(N*M+N2) 
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Faster Computer or Algorithm? 
The old computer processes 10,000 
instructions per hour 
What happens when we buy a computer 
10 times faster? 

----­16132n 

3.16223702n2 

7.371,8422505n log n 

105,00050020n 

1010,0001,00010n 

n’/nn’nT(n) 

+ 7N+ 2P+Q*R) 


