
Introduction to Computers and
Programming

Lecture 8

Types

values

similarity of values and primitive
operations
– Elementary types
– Composite Types

Prof. I. K. Lundqvist

Reading: FK pp. 115-151 Sept 17 2003

• Type
– A set of
– A set of primitive operations

• Grouped into classes based on the

• Elementary Types : Values are
logically indivisible

• Composite Types : Values composed
from components

Type Classification

Elementary
Types

Scalar
Types

Access
Types

Discrete
Types

Real
Types

Scalar Types

→ relational operators are
defined

position number

Scalar
Types

Discrete
Types

Real
Types

Integer
Types

Enumeration
Types

Fixed
Point

Floating
Point

• Ordered

• Each value of a discrete type has a

Attributes of Scalar Types

•
range of S. The value of this attribute
is of the type of S.

•
range of S

•

Operations on Scalar Types

•
•
•

the value in the type
•

string
•

on the scalar type
–
– S’Succ (Integer) : returns (Integer + 1)

S’First denotes the lower bound of the

S’Last denotes the upper bound of the

S’Range is equivalent to the range
S’First .. S’Last

S’Min returns lower of two elements
S’Max returns higher of two elements
S’Value accepts a string and returns

S’Image converts the value into a

S’Pred and S’Succ – behavior depends

S’Pred (Integer) : returns (Integer -1)

Subtypes
• A subtype

type.

not distinct types. A subtype and the
larger type are also not distinct types.
Thus subtypes of the same thing are
assignment-compatible.

checks avoid some nonsense.

Subtype Example
•

Ada:
– subtype POSITIVE is INTEGER range 1..INTEGER'LAST;

subtype NATURAL is INTEGER range 0..INTEGER'LAST;

•
ranges of allowed values.
– min_on_bus : constant := 0;

max_on_bus : constant := 80;
type no_on_buses min_on_bus .. max_on_bus;

max_seated : constant no_on_buses := 50;

subtype seated_on_buses is no_on_buses
range min_on_bus .. max_seated;

subtype standing_on_buses is
range

is a subrange of a larger

• Subtypes of the same larger type are

• The benefit of subtypes is that range

Two useful sub-types of the integers are built into

Subtypes are appropriate whenever there are

is range

min_on_bus .. (max_on_bus - max_seated);

Subtypes

subtype Natural is Integer range 0..Integer’Last;

subtype Positive is Integer range 1..Integer’Last;

subtype NonNegativeFloat is Float range 0.0 .. Float’Last;

subtype SmallInt is Integer range -50..50;

subtype CapitalLetter is Character range ’A’..’Z’;

X, Y, Z : SmallInt;
NextChar : CapitalLetter;
Hours_Worked : NonNegFloat;

X := 25;
Y := 26;
Z := X + Y;

Operations on Discrete Types

•
of the argument

•
whose position number equals the
value of S

S’Pos(Arg) returns the position number

S’Val(Arg) a value of the type of S

CQ

Enumeration Types

type Class is
(Freshman, Sophomore, Junior, Senior);

type days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type colours is
type traffic_colours is (green, yellow, red);
type suits is (clubs, diamonds, hearts, spades);

words

• The outputs are exactly the same

• There will be no outputs

• The outputs are different

• I don’t know

(white, red, yellow, green, blue, pink, black);

• A data type whose values are a collection of allowed

Enumeration Types

benefits:

week

statements

Attributes of Enumerated Types
type Days is

Saturday, Sunday);

Today : Days; --current day of the week
Tomorrow : Days; --day after Today

Today := Friday;
Tomorrow := Saturday;

Days’First
Days’Last
Days’Pos(Monday)
Days’Val(0)
Days’Pred(Wednesday)
Days’Pred(Today)
Days’Succ(Tuesday)
Days’Succ(Today)

is Monday
is Sunday
is 0
is Monday
is Tuesday
is Thursday
is Wednesday
is Saturday

You must ensure the result is legal.
A CONSTRAINT_ERROR will
occur at run-time otherwise. For

days'SUCC(Sun) is
illegal.

• Enumeration types have the following

– readable programs
– avoid arbitrary mapping to numbers

• e.g. better to use "Wed" than 3 for a day of the

– they work well as selectors in case

• Example: mix_colours.adb

(Monday, Tuesday, Wednesday, Thursday, Friday,

example,

Derived Types

• age := -20;
•
• shoe_size := 2 * no_on_bus;

real world.

Derived Integer Types
• derived from INTEGER:
• type ages INTEGER range 0 .. 110;
age : ages;
voting_age : constant ages := 18;

type heights 0 .. 230;
height : heights;

min_enrolment : constant := 6;
max_enrolment : constant := 200;
type class_sizes 0..max_enrolment;

class_size : class_sizes;

height := age - class_size;

• Types help program values reflect the

New data types can be
is new

is range

is range

Type conversion

strong typing: different types cannot
be mixed

• type length 5 range 0.0 .. 1.0E10;
type area 5 range 0.0 .. 1.0E20;

function area_rectangle (L,H : length) return area is
begin

return area(L) * area(H);
end;

Benefits of derived types

–

– age := -20;

– class_size := class_size + 100;

objects

• Ada has

• Explicit type conversion is permitted:

is digits
is digits

• Nonsense rejected by compiler
height := age - class_size;

• "Out of range" rejected by compiler

• “Out of range” run time error

• Enforce distinct nature of different

• Robust, elegant, effective programs

I/O Libraries

– package type_io

package int_io TEXT_IO.INTEGER_IO (INTEGER);

type ages INTEGER range 0 .. 110;
package ages_io is new TEXT_IO.INTEGER_IO (ages);

type measurement is digits 10;
package measurement_io TEXT_IO.FLOAT_IO (measurement);

type suits is (clubs, diamonds, hearts, spades);
package suits_io TEXT_IO.ENUMERATION_IO (suits);

type colours is
package colours_io TEXT_IO.ENUMERATION_IO (colours);

Input/Output Operations

package Day_IO Ada.Text_IO.Enumeration_IO(Enum=>Days);

if this_day in weekend_days then
put(”Holliday!”);

;

Day_IO.Get(Item => Today);
Day_IO.Put(Item => Today, Width => 10);

type Days is

Saturday, Sunday);

• Each distinct type needs its own I/O library.
• General form:

is new
TEXT_IO.basetype_io (typename);

is new

is new

is new

is new

(white, red, yellow, green, brown, blue, pink, black);
is new

is new

end if

(Monday, Tuesday, Wednesday, Thursday, Friday,

Example

• subtypes[1..3].adb

