Introduction to Computers and
Programming

Prof. I. K. Lundqgvist

Lecture 8
April 5 2004

Today — More about Trees

e Spanning trees
— Prim’s algorithm
— Kruskal’s algorithm

e Generic search algorithm
— Depth-first search example
— Handling cycles
— Breadth-first search example

EDEEE e
s Al o Hel &
c[HA Mo 3
o[A e He [Hel
® e[He[Mol &
N
© N oo
Bf[1/0[0|1]|1
cfoliTelalo

AE%BH%CH%DI H

® Bl H
e
(D) A B C D E
U Alo|1|1]|1]|0
Blojo|o|1]|0
clolo|o|1]o0
Dlo|lo|o|1]|0
Elo|1]|0|0]|O

Trees

e A tree is a connected graph without
cycles

= A connected graph is a tree iff it has N
vertices and N-1 edges

= A graph is a tree iff there is one and
only one path joining any two of its
vertices

Spanning Trees
= A Spanning tree of a graph G, is a tree
that includes all the vertices from G.

The resulting spanning tree
is not unique

0@

Minimum Spanning Tree

e Prim’s Algorithm
— Finds a subset of the edges (that form a tree)
including every vertex and the total weight of
all the edges in tree is minimized
* Choose starting vertex
« Create the Fringe Set }
e Loop until the MST contains all the vertices in the
graph
— Remove edge with minimum weight from Fringe Set
— Add the edge to MST
— Update the Fringe Set

Initialization

Prim — Initialization

» Pick any vertex x as the starting vertex

* Place x in the Minimum Spanning Tree
(MST)

e For each vertex y in the graph that is
adjacent to x
— Add y to the Fringe Set

e For each vertex y in the Fringe Set

— Set weight of y to weight of the edge
connecting y to x

— Set x to be parent of y

Prim — Body

While number of vertices in MST < vertices in
the graph
Find vertex y with minimum weight in the Fringe Set
Add vertex and the edge x,y to the MST
Remove y from the Fringe Set
For all vertices z adjacent to y
If z is not in the Fringe Set
Add z to the Fringe Set
Set parent to y
Set weight of z to weight of the edge connecting z to y
Else
If Weight(y,z) < Weight(z) then
Set parent to y
Set weight of z to weight of the edge connecting z to y

SFO

34

Minimum spanning tree — Prim

BOS

191
JFK

MIA

Minimum Spanning Tree

» Kruskal’s Algorithm

— Finds a minimum spanning tree for a
connected weighted graph

* Create a set of trees, where each vertex in the
graph is a separate tree
- Create set S containing all edges in the graph
« While S not empty
— Remove edge with minimum weight from S

— if that edge connects two different trees, then add
it to the forest, combining two trees into a single
tree

— Otherwise discard that edge

SFO

34

ORD

2

SFO

34

LAX

Minimum spanning tree — Kruskal

BOS

191
JFK

MIA

More about Trees

e Spanning trees
— Prim’s algorithm
— Kruskal’s algorithm

e Generic search algorithm
— Depth-first search example
— Handling cycles
— Breadth-first search example

Depth First Search (DFS)

Idea:
*Explore descendants before siblings
Explore siblings left to right

Where do we place the children on the queue?
 Assume we pick first element of Q
* Add path extensions to ? of Q

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

Initialize Q with partial path (S)
If Q is empty, fail. Else, pick a partial path N from Q
If head(N) = G, return N (goal reached!)

Else:

il

a) Remove N from Q

b) Find all children of head(N) and
create all the one-step extensions of N to each child.

c) Add all extended paths to Q
d) Go to step 2.

Depth-First

Pick first element of Q; Add path extensions to front of Q

g BN

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

i A

Initialize Q with partial path (S)

If Q is empty, fail. Else, pick a partial path N from Q
If head(N) = G, return N (goal reached!)
Else:

a) Remove N from Q

b) Find all children of head(N) and
create all the one-step extensions of N to each child.

c) Add all extended paths to Q
d) Go to step 2.

Depth-First

Pick first element of Q; Add path extensions to front of Q

g |W DN

Depth-First

Pick first element of Q; Add path extensions to front of Q

g B | N

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

Q

(AS)(BS)

g BN

Added paths in blue

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

Initialize Q with partial path (S)

If Q is empty, fail. Else, pick a partial path N from Q
If head(N) = G, return N (goal reached!)
Else:

a) Remove N from Q

b) Find all children of head(N) and
create all the one-step extensions of N to each child.

c) Add all extended paths to Q
d) Go to step 2.

Depth-First

Pick first element of Q; Add path extensions to front of Q

NN

A
W
L

g |W DN

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

g | BN
>
>
o |5
=
(W
>
o
=
vs]
wn
)

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

als|lw|rn]| -
—
(@]
>
215
=
(W)
>
2]
=
vs]
(2}
@£

Added paths in blue

Depth-First Depth-First

Pick first element of Q; Add path extensions to front of Q Pick first element of Q; Add path extensions to front of Q

3

Q Q
e e 2 ©
2 Ses) 2 S ©S) 1 ©
3 |(CKS(DAS)BS) 3 |(CKS)(DAS)BS)
4 4 [DAS)BS) S
5 5

Added paths in blue Added paths in blue

Depth-First Depth-First
Pick first element of Q; Add path extensions to front of Q Pick first element of Q; Add path extensions to front of Q
3 3

Q 4 Q 4
1 / 2 O 1 / 2
2) (BS) 2) (BS)

1 1
3 (y/ DAS)(BS) 3 (y/ DAS)(BYS)
4 /(S BS 0 4 () 9
5 (CDAS)(GDAS)
> ey

Added paths in blue

PN PR

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

Initialize Q with partial path (S)

If Q is empty, fail. Else, pick a partial path N from Q

If head(N) = G, return N
Else:

a) Remove N from Q

b) Find all children of head(N) and

(goal reached!)

create all the one-step extensions of N to each child.

c) Add all extended paths to Q
d) Go to step 2.

Depth-First

Pick first element of Q; Add path extensions to front of Q

Q.

/

5ES)

=

XS DAY BS)

s lw [N

o589

- %S)(GDAS)
BS)

3

Depth-First

Pick first element of Q; Add path extensions to front of Q

C// DAS)(BS)

sl [N

o589

(zﬁxs (GDAS)
BS)

(GDAS)BS)

=

3

Depth-First

Pick first element of Q; Add path extensions to front of Q

=

Q/ DAS)(BS)

Sl [N

/}BS

5 AS)(GDAS)
BS)

6 |[cpas)Es)

3

More about Trees

e Spanning trees
— Prim’s algorithm
— Kruskal’s algorithm

e Generic search algorithm
— Depth-first search example
— Handling cycles
— Breadth-first search example

Issue: Starting at S and moving top to bottom,
will depth-first search ever reach G?

Depth-First

Effort can be wasted in more mild cases

Q
1 | 2
2 |ag@S) 4
1 .
3 (cr9Drs)@9)
T ®
4 |DASLBS S

(coasQoas)
5 » C visited multiple times

e Multiple pathsto C, D & G

6 |(GDAS)(BS)

How much wasted effort can be incurred in the worst case?

How Do We Avoid Repeat Visits?

Idea:
» Keep track of nodes already visited.

= Do not place visited nodes on Q.

Does this maintain correctness?

« Any goal reachable from a node that was visited a
second time would be reachable from that node the

first time.

Does it always improve efficiency?

= Guarantees each node appears at most once at
the head of a path in Q.

P NP

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

Initialize Q with partial path (S) as only entry; set Visited = ()
If Q is empty, fail. Else, pick some partial path N from Q

If head(N) = G, return N (goal reached!)

Else

a) Remove N from Q

b) Find all children of head(N) not in Visited and
create all the one-step extensions of N to each child.

c) Add to Q all the extended paths;
d) Add children of head(N) to Visited
e) Go to step 2.

More about Trees

e Spanning trees

— Prim’s algorithm
— Kruskal’s algorithm

e Generic search algorithm

— Depth-first search example
— Handling cycles
— Breadth-first search example

Breadth First Search (BFS)

Idea:
Explore relatives at same level before their children
eExplore relatives left to right

6 7

4}@{ S S
HON® Yo ot
Where do we place the children on the queue?

 Assume we pick first element of Q
» Add path extensions to ? of Q

Breadth-First

Pick first element of Q; Add path extensions to end of Q

Visited

S

oo~ W (N

Breadth-First

Pick first element of Q; Add path extensions to end of Q

Pick first element of Q; Add path extensions to end of Q

Breadth-First

Q Visited Q Visited
1 Ll s 1 Lgf s
2 2 |(AS)(BS) AB,S
3 3
4 4
5 5
6 6
Breadth-First Breadth-First
Pick first element of Q; Add path extensions to end of Q Pick first element of Q; Add path extensions to end of Q
Q Visited Q Visited
11](8) S 11](8) S
2)(BS) AB,S 2)(BS) AB,S
3 3 |(BS)(CAS)(DAS) CDBAS
4 4
5 5
6 6

Breadth-First

Pick first element of Q; Add path extensions to end of Q

Breadth-First

Pick first element of Q; Add path extensions to end of Q

Q Visited Q Visited
1](8) S 1](8) S
2 |(AS)(BYS) AB,S 2 |(AS)(BYS) ABS
3)(CAS)(DAS) CDBAS 3 |(BS)(CAS)(DAS) CDBAS 1
4 4 |(CAS)(DAS)(GBSY) G,CD,BAS
5 5 |[(DAS)(GBYS) G,CD,BAS
6 6 |(GBS) G,CD,BAS
Depth First Search (DFS)

Summary

.‘/‘\‘A Depth-first:

é Add path extensions to front of Q
o @ Pick first element of Q

) ©

Breadth First Search (BFS)

&

O © O ©

Breadth-first:
Add path extensions to back of Q

Pick first element of Q

Test_ordered_binary.adb

= Most problem solving tasks may be
formulated as state space search.

= Mathematical representations for search
are graphs and search trees.

» Depth-first and breadth-first search
may be framed, among others, as
instances of a generic search strategy.

e Cycle detection is required to achieve
efficiency and completeness.

e Document code
— What it is doing
— How it is doing it
— What it is not doing (detailed status)

e Test run code

e Zip code

