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Complex missions must carefully:

• Plan complex sequences of actions

• Schedule tight resources

• Monitor and diagnose behavior

• Repair or reconfigure hardware.

Most AI problems, like these, may be formulated as 
state space search.



5

Simple Trivial

Astronaut
Goose
Grain
Fox

Rover

• Astronaut + 1 item 
allowed in the rover.

• Goose alone eats Grain
• Fox alone eats Goose

Can the astronaut get its 
produce safely across the 

Martian canal?
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Problem Solving as 
State Space Search

• Formulate Goal
– State

• Astronaut, Fox, Goose & Grain across river

• Formulate Problem
– States

• Location of Astronaut, Fox, Goose & Grain 
at top or bottom river bank

– Operators
• Move rover with astronaut & 1 or 0 items

to other bank

• Generate Solution
– Sequence of States

• Move(goose,astronaut), Move(astronaut), . . .
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Graph

• A graph is a generalization of the simple 
concept of a set of dots (called vertices
or nodes) connected by links (called 
edges or arcs)
– Example: graph with 6 vertices and 7 edges

1 2

4 5

3

6
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Examples of Graphs

SFO

Boston

LA Dallas

Wash DC

Airline Routes

A B C

A B
C

A B
C

A

B
C

Put C on B

Put C on A

Put B on C

Put C on A

A

B
CPut A on C

Planning Actions

(graph of possible 
states of the world)

12

Graphs

• A graph G = (V, E) is a finite nonempty 
set of vertices and a set of edges

• An empty graph is the graph whose 
edge set is empty

• The null graph is the graph whose 
edge set and vertex set are empty
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1
3

V = {1, 2, 3}
E = {(1, 2)}

2

4

1 3 V = {1, 2, 3, 4}
E = {(1,2)(2,3)(1,4)(2,4)}

1 V = {1}
E = {∅}

V = {∅}
E = {∅}
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Examples of Graphs

Graph AirlineRoutes is represented as the pair (V,E)

V= {Bos, SFO, LA, Dallas, Wash DC}

E= {(SFO,Bos),(SFO,LA),(LA,Dallas),(Dallas,Wash DC)...}

SFO

Boston

LA Dallas

Wash DC

Airline Routes
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Graphs

• A loop in a graph is an edge e in E 
whose endpoints are the same vertex.

• A simple graph is a graph with no 
loops, and there is at most one edge 
between any pair of vertices.

1 2

4 5

3

6

A simple graph with
V = {1, 2, 3, 4, 5, 6}
E = {(1,2), (1,4), (2,3), (2,4), (3,5), (5,6), (4,5)}
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Graphs

• A multigraph has two or more edges 
that connect the same pair of vertices

• A cycle is a path that begins and ends 
with the same vertex
– A cycle of length 1 is a loop
– (1, 2, 3, 5, 4, 2, 1) is  a cycle of length 6

1 2

4 5

3

6

16

Vertices

• Two vertices, u and v in an 
undirected graph G are called 
adjacent (or neighbors) in G, if 
{(u,v)} is an edge of G.

• The degree of a vertex in an 
undirected graph is the number of 
edges incident with it, except that 
a loop at a vertex contributes 
twice to the degree of that vertex.

1 2

4 5

3

6
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Adjacency Matrix

• A finite graph is often represented by 
its adjacent matrix. 
– An entry in row I and column j gives the 

number of edges from the ith to the jth
vertex.

1 2

4 5

3

6

0 1 0 1 0 0
1 0 1 1 0 0
0 1 0 0 1 0
1 1 0 0 1 0 
0 0 1 1 0 1
0 0 0 0 1 0
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Layout of Graphs
7

8 6

9 42 1 3 5

0

1 3 5 9 2

48 0 6

7

S

2

4
6

8

7

1
3 5 0

9
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Walks and Paths

• A walk is a sequence of vertices (v1, 
v2, …, vk) in which each adjacent vertex 
pair is an edge

• A path is a walk with no repeated 
vertices

2

3

1 4

2

3

1 4

Walk (1,2,3,4,2) Path (1,2,3,4)
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“The 1st problem in Graph Theory”
Seven Bridges of Königsberg

• The city of Königsberg was set on the 
River Pregel, and included two large 
islands which were connected to each 
other and the mainland by seven 
bridges.
– Was it possible to walk a route that crossed 

each bridge exactly once, and return to the 
starting point?
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• An Eulerian path in a graph is a path 
that uses each edge precisely once.
– If such path exists, the graph is called 

traversable

• Euler showed that an Eulerian cycle 
exists if and only if all vertices in the 
graph are of even degree. 

“The 1st problem in Graph Theory”
Seven Bridges of Königsberg
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Weighted Graph
• A weighted graph associates a value 

(weight) to every edge in the graph. 
– A weight of a path in a weighted graph is 

the sum of the weights of the traversed 
edges.

• Directed graph (digraph) is a graph 
with one-way edges

A B

D E

C

F

2

1
1

1

3 7

2



23

Today

• Problem Formulation
– Problem solving as state space search

• Definition of Graphs
– Types of Graphs

• Shortest Path problems
– Dijkstra’s Algorithm

24

Shortest Path Problems

• The shortest path from v1 to v2
– Is the path of the smallest weight between 

the two vertices
– Shortest may be least number of edges, 

least total weight, etc.
– The weight of that path is called the 

distance between them
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Shortest Path Problems

• Example: the weight can be mileage, 
fares, etc.

BOS

JFK

ATL

MIA

LAX

SFO DEN

ORD

957

860
191

1090
760

595

606

722

2534

1855

908

2451834349
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Shortest Path Problems

• Dijkstra’s algorithm
– Finds shortest path for a directed and 

connected graph G(V,E) which has non-
negative weights.

– Applications: 
• Internet routing
• Road generation within a geographic region
• …
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Dijkstra’s Algorithm

• Dijkstra(G,w,s) 

Init_Source(G,s)
S := empty set 
Q := set of all vertices 

while Q is not an empty set loop
u := Extract_Min(Q) 
S := S union {u} 
for each vertex v which is a neighbor of u loop

Relax(u,v,w) 
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Dijkstra’s Algorithm

• Init_Source(G,s) 
for each vertex v in V[G] loop

d[v] := infinite 
previous[v] := 0 

d[s] := 0 

• v = Extract_Min(Q) searches for the vertex v 
in the vertex set Q that has the least d[v] 
value. That vertex is removed from the set Q 
and then returned. 

• Relax(u,v,w)
if d[v] > d[u] + w(u,v) then

d[v] := d[u] + w(u,v) 
previous[v] := u 
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Dijkstra’s Algorithm
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s

a b

dc

V = {a, b, c, d, s}
E = {(s,c), (c,d), (d,b), (b,d), 
(c,b), (a,c), (c,a), (a,b), (s,a)}

S = {∅}
Q = {s, a, b, c, d}

0
∞
∞
∞
∞

0
0
0
0
0

d = prev =
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Dijkstra’s Algorithm
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dc

S = {s}
Q = {a, b, c, d}

Extract_Min (Q) s
Neighbors of s = a, c

Relax (s,c,5)
Relax (s,a,10)

0
∞
∞
∞
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0
0
0
0
0

d =

prev =

0
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Dijkstra’s Algorithm
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Extract_Min (Q) d
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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