
1

Introduction to Computers and
Programming

Prof. I. K. Lundqvist

Recitation 3
April 23 2004

2

Big-O

f(n) and g(n), we say
that f(n) is O(g(n)) if there are positive
constants c and n0 so that

f(n) ≤ cg(n) for n ≥ n0

≤ cn
≤

– n ≥ 10/(c-2)

0 = 10

• Given function

• Example:2n + 10 is O(n)
– 2n + 10
– 10 n(c – 2)

– Pick c = 3 and n

4

Big-O
n)

0 ≥ 1 so that
4n-2 ≤ cn for n ≥ n0

true for c = 4 and n0 = 1

3 + 10n2 + 4n +2 is O(n3)
0 ≥ 1 so that

5n3+10n2+4n +2 ≤ cn3 for n ≥ n0
true for c = 21 and n0 = 1

2n + 3 is O(log2 n)
0 ≥ 1 so that

2log2 n + 3 ≤ c log2 n for n ≥ n0
true for c = 5 and n0 = 2

• 4n – 2 is O(
– Need a c > 0 and n

• 5n
– Need a c > 0 and n

• 2 log
– Need a c > 0 and n

Big-O

• Given function f(n) and g(n), we say
that f(n) is O(g(n)) if there are
positive constants c and n0 so that

f(n) ≤ cg(n) for n ≥ n0

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more
Yes No

f(n) grows more
No Yes

g(n) and f(n) has
same growth Yes

5
Yes

7

6

type Int_Array (Integer range <>) of Integer;

procedure Measure (A : Int_Array) is
Sum : Integer := 0;

begin

for I in A'

for J in A'
Sum := Sum + A(J);

;

;

end Measure;

Inner loop

Outer loop

Ex 1

is array

range loop

range loop

end loop

end loop

Statement Runs in
X time

Executes
of times

Variable Sum is initialized Constant1 1

Array of size n is created Constant2 1

Variable I is created and initialized Constant3 1

I is tested against A’range (n) Constant4 n+1

Variable J is created and initialized Constant5 n

J is tested against A’range (n) Constant6 n(n+1)

Sum is incremented by A(J) Constant7 n2

J is incremented by 1 Constant8 n2

I is incremented by 1 Constant9 n

BigO.adb

8

Ex 2

type Int_Array (Integer range <>) of Integer;

procedure Measure (A : Int_Array) is
Sum : Integer := 0;

begin

for I in A'

for J in 1 .. I loop
Sum := Sum + A(J);

;

;

end Measure;

BigO2.adb

is array

range loop

–- only change to Ex 1

end loop

end loop

CQ – Ex 2

Variable J is created and initialized Constant5

J is tested against I Constant6

Sum is incremented by A(J) Constant7

J is incremented by 1 Constant8

1. N, N*(N+1), N*N, N

2. N, N*(I+1), N*N, N*N

3. N, N*(I+1), N*I, N*I

4. I still don’t get it
9

10

Ex 3

type Int_Array (Integer range <>) of Integer;

procedure Measure (A : Int_Array) is
Sum : Integer := 0;

begin

for I in A'

for J in 1 .. 4 loop -- only change to Ex 2
Sum := Sum + A(I); -- only change to Ex 2

;

;

end Measure;

BigO3.adb

is array

range loop

end loop

end loop

CQ – Ex 3

Variable J is created and initialized Constant5

J is tested against I Constant6

Sum is incremented by A(J) Constant7

J is incremented by 1 Constant8

1. N, N*(I+1), N*I, N*I

2. N, N*5, N*4, N*4

3. N, N*5, 4, 4

4. I still don’t get it
11

12

Ex 4

function Factorial (N : in Natural) return Positive is
begin

if N = 0 then
return 1;

else
return N * Factorial (N-1);

;
end Factorial;

13

How long time does executing the
Factorial algorithm take?

2)

end if

CQ – Ex 4

1. O(n)

2. O(n

3. log n

4. 42

14

Divide and Conquer

that contains the following steps

– Divide: Break the problem into smaller
sub-problems

– Recur: Solve each of the sub-problems
recursively

– Conquer: Combine the solutions of each of
the sub-problems to form the solution of
the problem

Represent the solution using a recurrence equation

15

Merge Sort

• Divide
subarrays A(p .. mid) and A(mid+1 .. r),
where mid is (p + r)/2

• Conquer by recursively sorting the two
subarrays A(p .. mid) and A(mid+1 .. r)

• Combine by merging the two sorted
subarrays A(p .. mid) and A(mid+1 .. r) to

p .. r)

• It is an algorithmic design paradigm

: Split the array into into two

produce a single sorted subarray A(

17

16

Merge

• Input: Array A and indices p, mid, r
such that
– p ≤ mid < r

A(p .. mid) is sorted and
subarray A(mid+1 .. r) is sorted

• Output: single sorted array A(p .. r)

• T(n) = O(n),
where n=r-p+1 = # of elements being
merged

Merge Sort Analysis
• The base case: when n =1, T(n)=O(1)

n ≥ 2, time for merge sort steps:
– Divide: Compute mid as the average of p, r
⇒cost = O(1)

– Conquer: Solve 2 subproblems, each of size n/ 2

⇒cost = 2T(n/2)
– Combine: merge to an n element subarray
⇒ cost = O(n)

T(n) = O(1) n = 1

2T(n/2) + O(n) + O(1) n> 1

– subarray

• When

18

Solving Recurrences:
Iteration

19

aT(n/b) + cn
a(aT(n/b/b) + cn/b) + cn
a2T(n/b2) + cna/b + cn
a2T(n/b2

a2(aT(n/b2/b) + cn/b2) + cn(a/b + 1)
a3T(n/b3) + cn(a2/b2) + cn(a/b + 1)
a3T(n/b3) + cn(a2/b2 + a/b + 1)
…
akT(n/bk) + cn(ak-1/bk-1 + ak-2/bk-2 2/b2 + a/b + 1)

• T(n) =

) + cn(a/b + 1)

+ … + a

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

⎪⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

21

20

– kT(n/bk) + cn(ak-1/bk-1 + ... + a2/b2 + a/b +
1)

• b n
k

kT(1) + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1)

= ak k-1/bk-1 + ... + a2/b2 + a/b + 1)

= cak + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1)

= cnak /bk + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1)

= cn(ak/bk + ... + a2/b2 + a/b + 1)

⎪ ⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

b n
k/bk + ... + a2/b2 + a/b + 1)

= cn(logb n + 1)
= O(n log n)

⎪ ⎩

⎪
⎨
⎧

>+⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

1
)(ncn

b

n
aT

nc
nT

T(n) = O(1) n = 1

2T(n/2) + O(n) + O(1) n> 1

• So we have
T(n) = a

For k = log
– n = b

– T(n) = a

c + cn(a

• So with k = log
– T(n) = cn(a

• What if a = b?
– T(n) = cn(k + 1)

22

The Master Method

divide and conquer algorithm

size n into a subproblems, each of size n/b

divide the problem + combine solved
subproblems) be described by the function
f(n)

provides a simple
“cookbook

23

Simplified Master Method

• T(n) = aT(n/b) + cnk,
where and b > 1

()
()
() k

k

k

k

b
k

a

ba

ba

ba

nO

nnO

nO b

<

=

>

log

log

T(n) =

• Given: a
– An algorithm that divides the problem of

– Let the cost of each stage (i.e., the work to

– The master method
” solution

a,c > 0

24

The Towers of Hanoi

• Goal: Move stack of rings to another peg

ring

For simplicity, suppose there were just 3 disks

the top disk from A to B.

A B C

The Towers of Hanoi

– May only move 1 ring at a time

– May never have larger ring on top of smaller

Since we can only move one disk at a time, we move

For simplicity, suppose there were just 3 disks

We then move the top disk from A to C.
A B C

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

We then move the top disk from B to C.
A B C

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

We then move the top disk from A to B.
A B C

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

We then move the top disk from C to A.
A B C

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

We then move the top disk from C to B.
A B C

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

We then move the top disk from A to B.
A B C

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

and we’re done!

disks increases...

A B C

The Towers of Hanoi

33

Æ 1 operation
Æ 3 operations
Æ 7 operations
Æ 15 operations

Cost: 2N-1 = O(2N)

Æ 264 operations

The Towers of Hanoi

The problem gets more difficult as the number of

• 1 ring
• 2 rings
• 3 rings
• 4 rings

• 64 rings

34

Towers of Hanoi

• hanoi(from,to,other,number)
number disks

from to needle to
if number=1 then

move the top disk from needle from
to needle to

else
hanoi(from,other,to, number-1)
hanoi(from,to,other, 1)
hanoi(other,to, from, number-1)

end

35

Some math that is good to know

b(xy) = logb by

b(x/y) = logb by

b bx

b xa/logxb
• a(b+c) = abac

• abc = (ab)c

• ab/ac = a(b-c)

logab

• bc = aclogab

-- move the top
-- from needle

• log x + log
• log x – log
• log xa = alog
• log a = log

• b = a

