Introduction to Computers and
Programming

Prof. I. K. Lundqvist

Recitation 3
April 23 2004

Big-O

e Given function f(n) and g(n), we say
that f(n) is O(g(n)) if there are positive
constants c and ngy so that

f(n) <cg(n) for n > n,

e Example:2n + 10 is O(n)
—2n + 10 <cn
—10<n(c—-2)

—n > 10/(c-2)
—Pick c = 3 and ny = 10

Big-O

e 4n — 2 is O(n)
—Need ac > 0 and ny > 1 so that
4n-2 < cn for n =2 ng,
trueforc=4and ng=1

e 5n3 + 10n2 + 4n +2 is O(n3)
—Need ac >0 and ny > 1 so that
5n3+10n2+4n +2 <cn® for n > n,
trueforc=21and ng =1

e 2 log,n + 3 is O(log, n)
—Need ac >0 and ny > 1 so that
2log, n + 3<clog, nfornz=ng
true forc =5and ng =2

Big-O

e Given function f(n) and g(n), we say
that f(n) is O(g(n)) if there are
positive constants ¢ and ngy so that

f(n) < cg(n) for n > n,

f(n) is O(g(n)) |g(n) is O(f(n))

n rows maore
9(m g Yes NoO

f
(n) grows more No ves

g(n) and f(n) has
same growth Yes Yes

Ex 1

type Int _Array is array (Integer range <>) of Integer;

procedure Measure (A - Int_Array) is

Sum : Integer :-= O;
begin

for 1 in A"range loop

for J in A"range loop
Sum := Sum + A(J);

end oaps Inner loop
end loop; Outer loop
end Measure;
6
Statement Runs in Executes
X time # of times
Variable Sum is initialized Constantl 1
Array of size n is created Constant2 1
Variable | is created and initialized Constant3 1
| is tested against A’range (n) Constant4 n+1
Variable J is created and initialized Constant5 n
J is tested against A'range (n) Constant6 n(n+1)
Sum is incremented by A(J) Constant7 n2
J is incremented by 1 Constant8 n2
I is incremented by 1 Constant9 n

Ex 2

type Int _Array is array (Integer range <>) of Integer;
procedure Measure (A - Int_Array) is

Sum : Integer :-= O;
begin

for I in A"range loop

for J inl1l .. I loop — only change to Ex 1
Sum := Sum + A(J);
end loop;
end loop;

end Measure;

BigO2.adb

CQ—-—Ex?2

Variable J is created and initialized Constant5
J is tested against | Constant6
Sum is incremented by A(J) Constant7
J is incremented by 1 Constant8
1. N, N*(N+1), N*N, N
2. N, N*(1+1), N*N, N*N
3. N, N*(1+1), N*I, N*|

4. 1 still don’t get it

Ex 3

type Int_Array is array (Integer range <>) of Integer;

procedure Measure (A - Int_Array) is

Sum : Integer :-= O;
begin

for 1 in A"range loop

for J inl .. 4 loop -
Sum := Sum + A(l); -
end loop;

end loop;

end Measure;

only change to Ex 2
only change to Ex 2

BigO3.adb

CQ—-—Ex3

Variable J is created and initialized Constant5
J is tested against | Constant6
Sum is incremented by A(J) Constant7
J is incremented by 1 Constant8
1. N, N*(1+1), N*I, N*|
2. N, N*5, N*4, N*4
3. N, N*5, 4, 4

4. 1 still don’t get it

11

EX 4

function Factorial (N : in Natural) return Positive is
begin
iIT N =0 then
return 1;
else
return N * Factorial (N-1);
end if;
end Factorial;

12

CQ-Ex4

How long time does executing the
Factorial algorithm take?

1. O(n)
2. O(n?
3. log n

4. 42

13

Divide and Conqguer

e It is an algorithmic design paradigm
that contains the following steps

— Divide: Break the problem into smaller
sub-problems

— Recur: Solve each of the sub-problems
recursively

— Conquer: Combine the solutions of each of
the sub-problems to form the solution of
the problem

Represent the solution using a recurrence equation
14

Merge Sort

e Divide: Split the array into into two
subarrays A(p .. mid) and A(mid+1 .. r),
where mid is (p + r)/2

e Conquer by recursively sorting the two
subarrays A(p .. mid) and A(mid+1 .. r)

e Combine by merging the two sorted
subarrays A(p .. mid) and A(mid+1 .. r) to
produce a single sorted subarray A(p .. r)

15

Merge

e Input: Array A and indices p, mid, r
such that
—p<mid<r

— subarray A(p .. mid) is sorted and
subarray A(mid+1 .. r) is sorted

e Output: single sorted array A(p .. r)

e T(N) = 0(N),
where n=r-p+1 = # of elements being
merged

16

Merge Sort Analysis

e The base case: when n =1, T(n)=0(1)
e When n > 2, time for merge sort steps:
— Divide: Compute mid as the average of p, r
—=cost = O(1)
— Conquer: Solve 2 subproblems, each of size n/ 2
=cost = 2T(n/2)
— Combine: merge to an n element subarray
= cost = O(n)

T(n) = 0O(1) n=1
2T(n/2) + O(n) + O(1) n> 1

Solving Recurrences:

Iteration
[C n=1
T(n):<a n +cn n>1

18

e T(n) =
aT(n/b) + cn
a(aT(n/b/b) + cn/b) + cn
a’T(n/b?) + cna/b + cn
a?T(n/b?) + cn(a/b + 1)
a?(aT(n/b?/b) + cn/b?) + cn(a/b + 1)
asT(n/b3) + cn(a?/b?) + cn(a/b + 1)
asT(n/b3) + cn(a?/b? + a/b + 1)

akT(n/bk) + cn(ak-/b*%1 + ak-2/bk-2 + .. + a?/b2 + a/b + 1)

19

clJ n=1

I'(n) = {aT%Q+ cn n>1

e So we have
— T(n) = akT(n/bX) + cn(ak-/b*x1+ ... + a?/b2+ a/b +
1)

— T(n) = akT(1) + cn(ak/bk1+ ... + a?/b%2+ a/b + 1)
= akc + cn(ak-/bk1+ ... + a2/b2+ a/b + 1)
= cak + cn(ak/bk1+ ... + a?/b2+ a/b + 1)
= cnak/bk + cn(akY/bk1+ ... + a2/b%2+ a/b + 1)
= cn(ak/bX+ ... + a2/b%2+ a/b + 1)

20

cl] n=1

I'(n) = {aT%;+ cn n>1

= So with k = log, n
—T(n) = cn(a¥/bk+ ... + a?/b2+ a/b + 1)

 What if a = b?
—T(n) =cn(k + 1)
= cn(log, n + 1)
= O(n log n)

T(n) = 0O(1) n=1
2T(n/2) + O(n) + O(1) n> 1

The Master Method

e Given: a divide and conquer algorithm

— An algorithm that divides the problem of
size n into a subproblems, each of size n/b

— Let the cost of each stage (i.e., the work to
divide the problem + combine solved
subproblems) be described by the function

f(n)

— The master method provides a simple
“cookbook” solution

Simplified Master Method

. T(n) = aT(n/b) + cnk,
where a,c >0and b > 1

,

O@'Ogbﬂ) a> b
T(n) = < O@?@Ogbdfz) al=b""
O@Pk[) al< b*

The Towers of Hanoi

e Goal: Move stack of rings to another peg

— May only move 1 ring at a time

— May never have larger ring on top of smaller
ring

24

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

A B C

Since we can only move one disk at a time, we move
the top disk from A to B.

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

A B C
We then move the top disk from A to C.

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

A B C
We then move the top disk from B to C.

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

A B C
We then move the top disk from A to B.

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

A B C
We then move the top disk from C to A.

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

A B C
We then move the top disk from C to B.

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

A B C
We then move the top disk from A to B.

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

A B C
and we’re done!

The problem gets more difficult as the number of
disks increases...

The Towers of Hanoi

e 1lring -2 1 operation

e 2rings > 3 operations
e« 3rings > 7 operations
e 4rings - 15 operations

Cost: 2N-1 = O(2V)

e 64 rings~> 254 operations

33

Towers of Hanoi

e hanoi (from,to,other,number)
-- move the top number disks
—-— from needle from to needle to
1T number=1 then
move the top disk from needle from
to needle to
else
hanoi (from,other,to, number-1)
hanoir (from,to,other, 1)
hanoi (other,to, from, number-1)
end

34

Some math that is good to know

= logy(xy) = logpx + logpy
= log,(x/y) = logpx — logpy
» log,xa = alog,Xx

» log,a = log,a/log,b

e g(b+tc) = gbgc

e abc — (ab)c

e ab/ac = ab-0)

e bh = glogab

e bt = aclogab

35

