
Introduction to Computers and
Programming

Prof. I. K. Lundqvist

Lecture 3
Mar 15 2004

Ada.Strings.Fixed (A.4.3)
• procedure Move (Source : in String;

Target : out String;
Drop : in Truncation := Error;
Justify : in Alignment := Left;
Pad : in Character := Space);

• function Insert (Source : in String;
Before : in Positive;
New_Item : in String) return String;

• function Delete (Source : in String;
From : in Positive;
Through : in Natural) return String;

Input/Output Input/Output Operations (A.6)

ial I/O Text_IO
• Related I/O packages

• Text files
– Formatting input
– Formatting output files

Sequent

Streams.Stream_IO

Text_IO.Text_Stream

Heterogenous

I/O

Homogeneous

Direct I/O

Files (A.7)

• External files: Values input from the
external environment of the program, or
output to the external environment

• File

(string that gives system defined
characteristics such as access rights)

Language Defined Types (A.7)

• File_Type: associates an object through
which the program can access the external
file

My_File : Ada.Text_IO.File_Type;

and Stream_IO
type File_Mode is (In_File, Out_File,

Append_File);

type File_Mode is (In_File, Inout_File,
Out_File);

Sequential vs. Direct (A.8)

• Sequential Files

• Direct Files

consecutive positions in linear order
– index: location of current element(>=1)
– current size: number of elements in file

Logical View of Text Files (A.10)

)
sequence of

sequence of

sequence of
End of Line

Page Terminator

File Terminator

– Name (string)
– Form

• For Sequential_IO, Text_IO, Wide_Text_IO

• For Direct_IO

– Sequential_IO
– Files viewed as a sequence of values
– Transfer occurs in order of appearance

– Direct_IO
– File viewed as a set of elements occupying

Character(s)

Line(s)

Page(s

File

• Terminators are generated
– Explicitly by procedures/ functions
– Implicitly as part of other operations

Ada.Text_IO (A.10.1)

procedure Create (File : File_Type;
Mode : in File_Mode := Out_File;
Name : in String := "";
Form : in String := "");

procedure Open (File : File_Type;
Mode : in File_Mode;
Name : in String;
Form : in String := "");

procedure Close (File : File_Type);
procedure Delete (File : File_Type);
procedure Reset (File : File_Type;

Mode : in File_Mode);
procedure Reset (File : File_Type);

Text Input/Output

•

•

X

formats.adb

Output to a File 1(2)

– Create(Internal_Name, Out_File,
"TEST.TXT");

– Put(Internal_Name, ”Some text.");
– New_Line(Internal_Name, 2);

fileout1.adb

Output to a File 2(2)

– Set_Output(Internal_Name);
Put_Line(”Some other text.");
New_Line(2);
Put_Line(Standard_Output, ”On screen");
Set_Output(Standard_Output);

–

in out

in out

in out
in out
in out
in out

• Ada and I/O
– Embedded real-time systems
– Business oriented applications

• Package instantiation
– Ada.Text_IO.Integer_IO; (generic package)

Ada.Integer_Text_IO; (preinstantiated for the type Integer)

– Ada.Text_IO.Float_IO;
Ada.Float_Text_IO;

• Brute force example: Formatted output data

• Need 2 file names to read and write to a file
– Internal name (used in our program)
– External name (used by OS)

• Create -- associate names with each other

• Writing to a file

• Redirecting output

• Closing a file
Close(Internal_Name);

Files, cont.

once

– Open(My_File, In_File, "CHARACTS.TXT");

– End_Of_File(My_File);
TRUE when next char to be read is EOF

character
– Reset(My_File);

– End_Of_Line(My_File)
TRUE when next char in buffer is EOL

character
charin.adb

Examples

Standard_Input
End_Of_File when reading from keyboard

stringio.adb
integerin.adb

• Example: How to open multiple files at

• Input read from a file

• File pointer set to beginning of file

• Returns

• File pointer moved to beginning of file again

• Returns

multfileout.adb

• String Input and Output
• Read Integers from file
• Read Floating point numbers from file

– What has to be changed?

• Input from keyboard
– Internal filename:
– No

