Introduction to Computers and
Programming

Prof. I. K. Lundqvist

Lecture 16
Reading: FK pp. 367-384, 415-420, 214-217 Oct 8 2003

Structured data types

e SO far:
— scalar (single value) data types
— structured data type: array

e records: data structure that collects
together into one unit several related
items of data
— Name, phone number, sex, age, and weight

— Day number, month name, and year
number

Arrays

» Access elements using Indices
— Single Dimension arrays A(l)
— Two dimensional arrays A(l,J)
— N dimensional array A(iy, i,--,1,)
e Loops can be used to access control to

elements. for 1 in1 .. M loop
for 1 in 1 .. N loop for J in1 .. N loop
Get (A(D)); Put (B(I1,J));
end loop; end loop;
end loop;
Records

e To use records we need to know:

1. How to design a record
2. How to declare record types and variables

3. How to use a record

1. Designing Records

e To design a record:

— identify the items of data that are relevant
in this application

— use a data structure diagram to show the
relevant information

e decide on names for the overall structure, and
for the individual fields

— determine the data types of the fields

Examplel Fitness club

persons

name phone sex age weight
name I names; —-— string sub-type
phone : phones; -— string sub-type
sex . sexes; —-- enumerated type
age - ages; —-— 1nteger sub-range
weight : weights; -- float sub-type

2. Declaring records

e Form of declaration:

—— declaration of record data type
type record type name is record
field name 1 : field type 1;
field name 2 : field type 2;
-- various fTields in the record
end record;

2. Declaring records

e Example - positional aggregate:
average_male - constant persons :-=

(“Mr. A Average
male, 25, 72.5);

e Example - named aggregate:
average_female . constant persons :-=

(name => "Ms. A Average
phone =>7 “
sex => female,
age => 21,

weight => 62.0);

3. Using records

e To refer to an entire record variable (for
assignment, parameter, comparison,
etc) just use its name

e To refer to a field of a record, use
record _name.field name

— average male.weight
average female.name

3. Using records

e Assignment

— You can assignh one record variable to
another of identical type
» that_person := this_person;

e Input
— You cannot read an entire record variable in

a single operation. You must read each
field separately.

— To input a record variable use a procedure:
 Prompt for and get each field in turn

Co 1

1. My _ First Record contains contents of
My Second_Record

2. Program will not compile
3. Program gives a run-time error

4. Don’'t know

3. Using records

e Output
— You cannot display an entire record variable

in a single operation. You must display
each field separately.

— To display a record variable use a
procedure:
» Describe and display each field in turn

3. Using records

e Comparisons

— You can compare one record variable to another of identical
type using “=" or “/=" operators
e if this _person = that _person then

— You should use a function to compare specific fields

« function is_heavier_than(a_person,
another_person : persons) return BOOLEAN is

begin -- is_heavier_than
return a_person.weight > another_person.weight;
end is_heavier_than;

— To use this function:
e if is_heavier_than(this_person, that_person) then
PUT(this_person.name); PUT_LINE(" i§s heavier.'™);
else
PUT(that_person.name); PUT_LINE(" is heavier.'™);
end if;

CQ 2
1. Displays garbage
2. Program will not compile
3. Program gives a run-time error

4. Displays
John Doe
25
Detroit Mi

5. Don’t know

Hierarchical records

e The components of a record can be any
type, including another record

persons

name phone weight
title
age sex
fname
shame
text Io
e Text 10

— Page line character
e set_col : go to nominated column in output file
e new_line: go to next line of output
e set_line: go to nominated line in output file
e new_page: go to next page of output
= skip_line: go to start of next line in input
» skip_page: go to start of next page of inputs
e page: what page number are we up to in the file?
e line: what line number are we up to on the page?

= col: what character position are we up to on the
line?

example

e SET_LINE (2);
SET_COL (30);
PUT ("'Student Results Report');
SET _LINE (4);
SET COL (5); PUT ("'Student name');
SET COL (35); PUT (“Assignments');
SET _COL (50); PUT ("Exams');
SET COL (65); PUT ("Average');
SET _LINE (6);

Line length

e For output files
— set_line_length for lines
— set_page_length for pages
e set_line_length
— EOL generated automatically when limit
reached

— Default is O

— SET_LINE_LENGTH (30);
for 1 in 1 .. 20 loop
PUT (i**2, width => 5);
end loop; - 1 4 9 16 25 36"
< 49 64 81 100 121 144"

169 196 225 256 289 324°
361 400°

Files

e Files need to be:

— Declared

- File variable set up

Open (Inf, In_File, File_Name(1..Name_Length));
— Created/opened/reset

» Disk file linked to file variable

< File opened for 1/0

Mode is (In_File, Out_File, Append_File);

— Used for 1/0

- PUT, GET, etc

Put_Line (Outf, Line (1..Line_Length));
— Closed

« After 1/0 finished

CQ 3

In the program, what is changed in the file

1. this is without putline —
Where does this line go?

2. this is without putline - Where does this line go?

3. This is a copy - do not replicate this is without putline -
Where does this line go?

4. None of the Above

reset

e Need to process a file twice. RESET
procedure:
— Go back to beginning
— (optionally) change mode
— File must be open already

-- read file twice
open (filevar, In_file, filename);
--code to read from the file
reset (filevar);
--code to read the file all over again
close (filevar);

File position functions

END_ OF_FILE

— Next character is EOF

— Next character is combination of EOL, EOP, EOF
END_OF_LINE

— Next character is EOL or EOF

END_ OF_PAGE

— Next character is combination of EOL and EOP
— Next character is EOF

1T END OF PAGE (infile) then ..
while not END OF FILE loop ..

Example2 Priority Queue

Ql S |-3| 0 | 5 12|17 | ?2 | ?2 | ? | ?

Free O 1 2 3 4 5 6 7

e Data structure that stores items so that
retrieval of ‘highest priority’ item can be
done efficiently.

» Highest priority have lower values
e Operations: PUT, GET, EMPTY

