
Introduction to Computers and
Programming

Lecture 16

Structured data types

– scalar (single value) data types
array

• records: data structure that collects
together into one unit several related
items of data

number
– …

Prof. I. K. Lundqvist

Reading: FK pp. 367-384, 415-420, 214-217 Oct 8 2003

• So far:

– structured data type:

– Name, phone number, sex, age, and weight
– Day number, month name, and year

Arrays

1, i2,..,in)

elements.

for I in 1 loop

;

for I in 1 loop

for J in 1 .. N loop

Put (B(I,J));

end loop;

end loop;

Records

•

design a record

declare record types and variables

use a record

• Access elements using Indices
– Single Dimension arrays A(I)
– Two dimensional arrays A(I,J)
– N dimensional array A(i

• Loops can be used to access control to

.. N

Get (A(I));

end loop

.. M

To use records we need to know:

1. How to

2. How to

3. How to

1. Designing Records

– identify the items of data that are relevant

data structure diagram to show the
relevant information

names for the overall structure, and
for the individual fields

data types of the fields

Example1 Fitness club

name : names;
phone : phones;
sex : sexes;
age : ages;
weight : weights;

name phone sex age weight

persons

• To design a record:

in this application

– use a

• decide on

– determine the

-- string sub-type
-- string sub-type
-- enumerated type
-- integer sub-range
-- float sub-type

2. Declaring records

type record_type_name
field_name_1 : field_type_1;
field_name_2 : field_type_2;

;

2. Declaring records

positional aggregate:
average_male : constant persons :=
(“Mr. A Average “,
“ “,
male, 25, 72.5);

named aggregate:
average_female : constant persons :=
(name => ”Ms. A Average “,
phone => ” “,
sex => female,
age => 21,
weight => 62.0);

• Form of declaration:

-- declaration of record data type
is record

-- various fields in the record
end record

• Example -

• Example -

3. Using records

assignment, parameter, comparison,
etc) just use its name

record_name.field_name

– average_male.weight
average_female.name

3. Using records

another of identical type

a single operation. You must read each
field separately.

• To refer to an entire record variable (for

• To refer to a field of a record, use

• Assignment
– You can assign one record variable to

• that_person := this_person;

• Input
– You cannot read an entire record variable in

– To input a record variable use a procedure:
• Prompt for and get each field in turn

CQ 1

My_Second_Record

3. Using records

in a single operation. You must display
each field separately.

procedure:

1. My_First_Record contains contents of

2. Program will not compile

3. Program gives a run-time error

4. Don’t know

• Output
– You cannot display an entire record variable

– To display a record variable use a

• Describe and display each field in turn

3. Using records
• Comparisons

–
type using “=" or “/=" operators

• if this_person = that_person then

–
• function is_heavier_than(a_person,

another_person : persons) return BOOLEAN is

begin
return

end is_heavier_than;

–
• if is_heavier_than(this_person, that_person) then

else

;

CQ 2

John Doe
25
Detroit Mi

You can compare one record variable to another of identical

You should use a function to compare specific fields

-- is_heavier_than
a_person.weight > another_person.weight;

To use this function:

PUT(this_person.name); PUT_LINE(" is heavier.");

PUT(that_person.name); PUT_LINE(" is heavier.");
end if

1. Displays garbage

2. Program will not compile

3. Program gives a run-time error

4. Displays

5. Don’t know

Hierarchical records
any

type, including another record

phone weight

age sex

persons

name

title

fname

sname

text_io

line?

• The components of a record can be

• Text_IO
– Page line character

• set_col : go to nominated column in output file
• new_line: go to next line of output
• set_line: go to nominated line in output file
• new_page: go to next page of output
• skip_line: go to start of next line in input
• skip_page: go to start of next page of inputs
• page: what page number are we up to in the file?
• line: what line number are we up to on the page?
• col: what character position are we up to on the

example

SET_COL (30);
PUT ("Student Results Report");
SET_LINE (4);
SET_COL (5); PUT ("Student name");
SET_COL (35); PUT ("Assignments");
SET_COL (50); PUT ("Exams");
SET_COL (65); PUT ("Average");
SET_LINE (6);

Line length

reached

– SET_LINE_LENGTH (30);
for i in 1 .. 20 loop

PUT (i**2, width => 5);
; ' 1 4 9 16 25 36'

‘ 49 64 81 100 121 144'
' 169 196 225 256 289 324'
' 361 400'

• SET_LINE (2);

• For output files
– set_line_length for lines
– set_page_length for pages

• set_line_length
– EOL generated automatically when limit

– Default is 0

end loop

Files

•
–

Open (Inf, In_File, File_Name(1..Name_Length));

–
•
•

Mode is

–

Put_Line (Outf, Line (1..Line_Length));

•

CQ 3
In the program, what is changed in the file

1. this is –
Where does this line go?

2. this is

3. This is a copy - do not replicate this is
Where does this line go?

4. None of the Above

Files need to be:
Declared

• File variable set up

Created/opened/reset
Disk file linked to file variable
File opened for I/O

(In_File, Out_File, Append_File);

Used for I/O
• PUT, GET, etc

– Closed
After I/O finished

without putline

without putline - Where does this line go?

without putline ­

reset

•
procedure:
–
–
–

open (filevar, in_file, filename);
--code to read from the file
reset (filevar);
--code to read the file all over again
close (filevar);

File position functions

• if END_OF_PAGE (infile) then …
while not END_OF_FILE loop …

Need to process a file twice. RESET

Go back to beginning
(optionally) change mode
File must be open already

-- read file twice

• END_OF_FILE
– Next character is EOF
– Next character is combination of EOL, EOP, EOF

• END_OF_LINE
– Next character is EOL or EOF

• END_OF_PAGE
– Next character is combination of EOL and EOP
– Next character is EOF

Example2 Priority Queue

done efficiently.

?????171250-35Q

0 1 2 3 4 5 6 7 … N

Q

• Data structure that stores items so that
retrieval of ‘highest priority’ item can be

• Highest priority have lower values
• Operations: PUT, GET, EMPTY

Free

