Introduction to Computers and
Programming

JK
Prof. I. K. Lundqvist

15
Reading: FK pp. 557-563, handout Oct 7 2003

Recap

e Defining and Manipulating 1D Arrays
e Representing 2D arrays as 1D arrays

e Today
— Multi-Dimensional Arrays
— Matrices
— Operations of Matrices
— The Matrix Package

Two-dimensional Arrays

e Two indices needed to reference
elements in the array

Amsterdam Berlin London Madrid Paris Rome Stockholm

Amsterdam

Berlin

London

Madrid

Paris

Rome

Stockholm

-- various constants used in data types
max _dist : comnstant := 40077; -- max distance on earth

-- type declarations

type Distances is range 0 .. max_dist;

type City is (Amsterdam, Berlin, London, Madrid, Paris,
Rome, Stockholm) ;

type distance table is array (City, City) of Distances;

-- distances between various European cities
inter city : distance_ table :=
-- Amst, Berl, Lond, Madr, Pari, Rome, Stock

((0, 648, 494, 1752, 495, 1735, 1417), -- Amsterdam
(648, 0, 1101, 2349, 1092, 1588, 1032), -- Berlin
(494, 1101, 0, 1661, 404, 1870, 1807), -- London
(1752, 2349, 1661, 0, 1257, 2001, 3138), -- Madrid
(495, 1092, 404, 1257, 0, 1466, 1881), -- Paris
(1735, 1588, 1870, 2001, 1466, 0, 2620), -- Rome
(1417, 1032, 1807, 3138, 1881, 2620, 0)); -- Stockholm

-- distances I have traveled between various cities
traveled : distance_ table := (others => (others => 0));
your travel : distance table;

Using 2-D Arrays

e To reference elements of a 2D array

variable, use both index values
put (inter city(Berlin, Rome) ;
traveled (Stockholm, London) := 1807;

e Nested loops are often used to process 2D arrays
-- write out the table

for from in Amsterdam .. Stockholm loop
-- write one line of the table
for to in Amsterdam .. Stockholm loop
PUT (inter city(from, to), width=>6);
end loop;
NEW LINE;
end loop;

Multi-dimensional arrays

e Often have information in a tabular form
- Tables of data
— Matrices

e Use a multi-dimensional array to repr. data
- Items indexed by several subscripts
- E.g., row and column for 2D arrays

e Can have as many dimensions as wanted

- Extend declaration to include required index
ranges

- Extend references to include required indices

Multi-dimensional Array

e type multidim is
array (range,, range,, .., range,)
of element-type;

e Example:

type YearByMonth is array (1900..1999, Month) of real;
type Election is array (Candidate, precinct) of integer;

-- type declaration for higher dimensional arrays
type CUBE6 is array (1..6, 1..6, 1..6) of CHARACTER;

-- variable declaration for higher dimensional arrays
tictactoe 3d : CUBE6;

-- reference to element in multi-dimensional array
PUT (tictactoe 3d(2,3,4));

Concept Question - 1

What are the dimensions of the Array A
1. 3,3,3
2. 2,3,2

3. Don’t Know

4. It is dimensionless

Concept Question -2

What is the value of N displayed?
1. 12

3. Will throw a constraint error

4. Don’t Know

Basics

e Scalar - is a number, represented as [a]
or [1]

e Vector - is a single row or column of
numbers, denoted by a small bold letter
— Row vector [12 34 5]
— Column vector |1

1
2
3
4
5

Matrix

e A matrix is a set of rows and columns of
numbers — denoted by a bold Capital

letter
A {1 2 3}
4 5 6

e The Order of a matrix is the number of
rows X number of columns in the matrix

A {1 2 3}
45 6],

Operations

Equality
Addition/Subtraction
Multiplication
Determinant
Inversion

Matrix Equality

e Two matrices are said to be equal iff
they have the same order and all the
elements are equal.

Matrix Addition

e Two matrices A, B can be added iff they
have the same order.

e The resulting matrix has the same order
and the elements in the new matrix are
defined as Vvi,j, ¢, = a, + b,

ilj

Matrix Multiplication

e Scalar multiplication — multiply each
element in the matrix by the scalar

e To multiply two matrices, they must be
conformable (number of rows of the 1st
matrix = number of columns in the 2nd
matrix)

e When can you multiply two matrices

Amxnl Bpxq ?

Matrix Multiplication

e Consider two matrices A, B
* Cxqg = AB

a, a, a,||b, b, G, Cp B n= _
a, a, ay|Xb, by Cy Cyp Cli) = _Ez'i‘("k) B(k,j) =

a3 1 aSZ a33 b3 1 b32 C3 1 CSZ

PXq

1 ranges from 1.. m
jranges from 1 .. q
k ranges from 1 ..n=p

Matrix Transpose

e A transposed matrix has the elements
in the rows and columns interchanged

e The transpose of A is represented as A’

4 5 6

>
W N~
N » A

,A' |:1 2 3:| vV A’(1) = AQ,1)

Matrix Determinant

e The determinant of a matrix A is
denoted by |A| or det A.

e Determinants exist only for square
matrices

A= [all alz} ‘A‘ a,,8,, — 4a,,8,,

aZl aZZ

Generic Determinant

e For any nxn matrix, the formula for
finding the determinant is

n

- S;ds +1 if jli$ odd and -1 if jlis even
— ay;pis the element in row 1 and column jI

— A is the n-1 x n-1 matrix obtained from
matrix A by deleting its row 1 and column j
(cofactor matrix).

3x3 Determinant

If A is a 3x3 matrix shown below,

a1 1 alZ a1 3
aZl a22 a23
a31 a32 a33

The determinant |A]| is given by

‘A‘ a,,8y,8;; — 8,885, +8,,8,,8;, — 8,,8,,83; + 833,83, — 8,338,385,

Adjoint Matrix

If C; is the cofactor of a;;, then Adj A, = [C;] = [Cy]".

1 0 - . .
then the matrix of cofactors of A is:
A |2 3 0 _ _
| 2 { 3 0 2 0 +2 3
— + —
2 -1 1 -1 2|y o,
0o -2 1 -2 1 0
- + - 4 1 -2
2 -1 1 -1 12 .
0 -2 1 -2 |1 o L& —4 3
+ — +
3 o 2 o]2 3]
~3 -4 6
AdiA) |2 1 -4 1.e. the transpose of the above
1 -2 3
Inversion

e A matrix is singularlif it does not have
an inverse (the determinant is 0)

e The formula for finding the inverted
matrix is given as:

Al ADA 4L 0)

Ada95 Matrix Package

e The archive of this matrix package is
available in tar or zip format

e Link available from CP web page,
today's lecture

The Matrix Package

package Generic_Real_Arrays : basic math functions and array
math routines as defined by the Ada 95 ISO document
referred to above for vectors and matrices of real numbers.

package Generic_Real_Arrays.Array_lO: routines to print vectors
and arrays of real numbers to the console.

package Generic_Real_Arrays.Operations: more advanced
functions for vectors and arrays of real numbers, including
dynamic allocation, subvectors and submatrices,
determinants, eigenvalues/vectors, singular value
decompsition, and inverses.

package Real_Arrays_Operations_Test: test program

demonstrating the use of every subprogram in
Generic_Real_Arrays.Operations via a functional test.

