Introduction to Computers and
Programming

Prof. I. K. Lundqvist

Lecture 13
Reading: Oct 2 2003

Recap

e |[teration versus Recursion
e Towers of Hanol

e Computed time taken to solve towers of
Hanoi

Divide and Conquer

e It is an algorithmic design paradigm
that contains the following steps

— Divide: Break the problem into smaller
sub-problems

— Recur: Solve each of the sub-problems
recursively

— Conqguer: Combine the solutions of each of
the sub-problems to form the solution of
the problem

Represent the solution using a recurrence equation

Recurrence Equation

e A recurrence eguation is of the form

T(n) = aT(m) + b, nN>0,mM<n

(iInduction)

and

T(0) = constant (base case)
Where:

— aT(m): cost of solving a sub-problems of size m
— b: cost of pulling together the solutions

Solving Recurrence Equations

Iteration
Recurrence Trees
Substitution
Master Method

Towers of Hanoil

No.Moves
1
3
I
15
31

Given: T(1) =1
T(nN)=2T(n-1) +1

g A W N R |z

Using lteration

T(N) =2T(n-1) +1
TN)=2[2T(n-2) +1] +1

TN =2[2[2T(n-3) +1]+1]+1

TN =2[2[2[2T(n4)+1]+1]+1]+1
T(n) =24T(n-4) + 15

T(M) = 25T (n-k) + 2% - 1

Since n is finite, k = n.
Therefore,

imT(n) , ,,= 2" -1

Greatest Common Divisor

Given two natural numbers a, b
- If b =0, then GCD := a

- If b /= 0, then
-c:=aMODDb
-a:=Db
-b:=c

- GCD(a,b)

[The MOD function]

e Notation: m mod n = X

e X = Integer remainder when m is divided by n
=m - [m/nJn

e Examples:
— 8 mod 3 =2
— 42 mod 6 =0
— 5 mod 7 =5

Extended Euclid’s Algorithm
GCD(a,b) = ap+Dbg

38 mod 10 = 8 =38-3*10

10 mod 8 = 2 =10—-1*8
=10—-1*(38 -3 * 10)
= 4*10 — 1 *38

88mod2=0

GCD(2,0) = 2

“2” can be expressed as linear combination of 10
and 38 — Solve Diophantine Equations

Exercise

e Write 6 as an integer combination of 10
and 38

—Find GCD (38,10)

—EXpress the GCD as a linear combination of 38
and 10

—Multiply that expression by (6/GCD)

6 =3 (4*10 -1 *38)
=12 *10—-3 * 38

Multiplication

e Standard method for multiplying long numbers:
(1000a+b)x(1000c+d) = 1,000,000 ac
+ 1000 (ad + bc) + bd

e |nstead use:
(1000a+b)x(1000c+d) =

1,000,000 ac + 1000 ((a+b)(c+d) —ac - bd) + bd

One length-k multiply = 3 length-k/2 multiplies and a
bunch of additions and shifting

[Logarithms — log,(X)]

e A logarithm of base b for value y iIs the
power to which b is raised to get .
—logyy = X <> b*=y <« blogy =y
—log, 1 = 0O, log,b = 1 for all values of b

| ! | ! |
— base=10
— base=e
— bhase=2

log (X)
L] i PR o = on

> WN P

PRS - 1

Given n, nlogn, n4, n(log n)?2, for
large n:

. N has the largest value

. h log n has the largest value

. N2 has the largest value

. n(log n)?2 has the largest value

Relative size of
n, nlogn, n?, n(log n)?
e (nlogn)/n = logn =2 «
n I1Is more efficient than logn

e n(logn)2/ nloghn =logn - «
nlogn is more efficient than n(logn)?

e n(logn)2/ n2 = (logn)2/ n->0
n(logn)Zis more efficient than n2

e Order of efficiency Is
N, nlogn, n(logn)?, n?

Recurrence Tree

Recurrence Equation : T(n) < 3T(n/2) + cn

/

cn

cn/4|| cn/4

cn/2 cn/2
cn/4||cn/4
C||IC

™~

cn/2

R

c n/4

cl|C

1 node at depth-0

3 nodes at depth-1

9 nodes at depth-2

39" nodes at depth-lg n

Solving using Recurrence Tree

T(n) <cn (1+ 3(1/72) +9(1/4) + ... + 3l9n(1/ 2'9My)
<cn (1+3/2+ (3/2)°+ ...+ (3/2)!9n).

<cn ((3/2)19"*D _ 1) / ((3/2)-1)
<cn ((3/2)'9" (3/2) — 1) / (1/2)
< ((c n (3/2)'9" (3/2))/(1/2))—2cn
<cn (3/2)9"—2¢cn .

T(n) <3 cn (3/2)9" --approximation

3cn (nlg(3/2)) = 3¢ r]1+Ig(3/2)

Important Theorems

Arithmetic Series
Fornz21,1+2+ ... +n=n(n+1)/2

Geometric Series
Fora=z1,ak+akl+ .. 1=((@k1-1)/(a-1)

Logarithmic Behavior
a lgb — b g a

Recurrence Examples

s(n):{ 0 n=0 s(n):{ 0 n=0

c+s(h-1) n>0 n+s(n-1) n>0

C n=1

2T£gj+c n>1

T(n) =+

