
Introduction to Computers and
Programming

Prof. I. K. Lundqvist

Lecture 12
April 14 2004

2

The goal of an engineer is to retire
without having caused any major
catastrophe

- Dilbert

3

Today

4

•
–

Internet
–

computers running versions of Berkeley UNIX, and
used their resources to attack still more computers.

–
across the U.S., infecting thousands of computers
and making many of them unusable due to the
burden of its activity.

– Cause: undetected buffer overflow in C routine
gets()

• Program robustness
• Exception handling

November 2, 1988 Internet Worm
A self-replicating program was released upon the

This program (a worm) invaded VAX and Sun

Within the space of hours this program had spread

5

•
several patients
– Cause: poor testing of the software

• st

– Cause

•
communicating with NASA
– Cause: Approach orbit angle was incorrect because

of inconsistency between units of measurement

7

Errors

–
– Exceptions

1986: Therac 25 radiation machine kills

June 4, 1996: 1 flight of Ariane 5 aborted:
Ariane 5 destroyed

: Code from Ariane 4 guidance system was
reused in Ariane 5 but not tested.

September 23 1999: Mars Orbiter stops

• No programmer is perfect
– The good ones handle errors gracefully

• Errors
– Compile time
– Link-time

• Run-time errors
– Program errors

User errors

8

User Errors

outside legal bounds

gracefully

9

Exceptions

recovery may be possible

system

handlers

conditional checks

• User provides invalid input
– types in name of file that does not exist
– provides program argument with value

• Detect using “if” checks in program
– Program should print message and recover

– Possibly ask user for new input

• Rare errors “exceptional” from which

– User hits interrupt key
– Arithmetic overflow

• Detected by hardware or operating

– Program can handle them using exception

– Not usually possible/practical to detect with

10

Robustness

without either

11

Finding Errors

• Your program should never terminate

– Completing successfully
– Sending a meaningful error message

• Approaches to achieve Robustness
– Debug
– Defensive programming

• Conditional checks
• Assertions

– Exception handling

• Try to “break” the program
– What can go wrong?

– What happens if it does?

– Sometimes nothing needs to be done.

– If that is a problem, how can we detect it?

– What can we do about it?
• Tell the user
• Die gracefully
• Recover reasonably

12

Ada’s Classification of Errors 1.1.5

required to be
detected prior to run time by every
Ada implementation

required to be
detected at run time by the execution
of an Ada program

13

exception represents a kind of
exceptional situation

time) is called:

raise an exception is to abandon
normal program execution

the arising of an exception is called
handling the exception

1. Errors that are

2. Errors that are

3. Bounded errors

4. Erroneous execution

Exceptions – Ada Perspective

• An

– An occurrence of such a situation (at run
exception occurrence

• To

• Performing some actions in response to

);

14

Example
with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;

procedure Main is

subtype Numrange is Integer range 1..10;
Num : Numrange;

begin --main

Put ("please enter an integer from 1 to 10: "
Get(Num); Skip_Line;

end;

15

Exception Declaration

exception_declaration declares a
name for an exception

– Overflow, Underflow : exception;
Error : exception;

– Constraint_Error, Program_Error,
Storage_Error, and Tasking_Error

• An

• User-defined exceptions:

• Predefined language exceptions:

17

16

Exception Handlers

is specified by an exception_handler

subprogram specification
declarations

begin
statements

exception
one or more exception handlers

end;

Exception Handling

–
for that exception

–
terminates

– never returns to point where exception
occurred

–
passed back to its caller

• main reached with no handler
(program crashes)

• subprogram specification
declarations

begin
statements

exception
one or more exception handlers

end;

• The response to one or more exceptions

• Operation:
When exception occurs, control jumps to the handler

When handler statements finish, subprogram

Control

If no handler, subprogram terminates and exception is

Keep doing this until

Or suitable handler found

18

Example
with Ada.Text_IO;
use Ada.Text_IO;

procedure Open_File is

Filename : String (1 .. 30);
Namelen : Natural;
The_File : File_Type;

begin

Put (“What file do you want to read? ");
Get_Line (Filename, Namelen);
Open (File => The_File,

Name => Filename (1 .. Namelen),
Mode => In_File);

exception
when Status_Error =>

Put_Line ("The file is already open");
when Name_Error =>

Put_Line ("There is no file with that name");
when Use_Error =>

Put_Line ("The file cannot be read");
when others =>

Put_Line ("Unexpected error on opening file");
end Open_File;

19

Raise Statements

– raise exception_name;

– raise; --re-raise the current exception

-- ...

• A raise_statement raises an exception

20

Block statement

point in an Ada program.

– declare
declarations

begin
normal sequence of statements

exception
exception handlers

end;

21

Declare block for local variables
procedure main is

x,y : integer;
begin

statements;

declare
temp : integer;

begin
temp := x;
x := y;
y := temp;

end;

more statements
end;

The local declarations are only
known inside the block statement.

• You can define your own block at any

• Its structure is similar to a subprogram:

-- time to swap two variables

22

Exception in block statements

statement is to
handling (especially in a loop).

appropriate exception handler

23

Example program
--Safe I/O
with Ada.Text_Io; use Ada.Text_Io;

procedure Ex2 is
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
package Day_Io is new Enumeration_Io (Days); use Day_Io;

Local_Day : Days; --entered by user
Good_Day : Boolean := False; --loop control

begin

while not Good_Day loop
begin

Put ("Enter a day name (first 3 letters) : ");
Get (Local_Day);

Good_Day := True;

exception
when Data_Error =>

Put ("Must be first 3 letters of a day name");
New_Line; Skip_Line;

end;
end loop;
Skip_Line;

end Ex2;

Block

• The other reason for defining a block
enable local exception

• Operation:
– when an exception occurs:

• execution transfers straight to its exception handler
• appropriate exception handler is executed
• execution of the whole block statement terminates
• execution continues with statement after the block

– if no local exception handler:
• block terminates immediately
• control passes to outer block, to see if it has an

• etc.

-- this point is only reached if valid entry given

-- ...

-- exception handler for while block

24

Strategies for handling
exceptions

•

�

� detect, identify, pass it on

� program halts (crashes)

25

1. Take control
• Example: tan(x) may be impossible to compute or

represent
•

handled
•

anything was wrong.
function Tan (X : Float)

return Float is
begin

return Sin(X) / Cos(X);
exception

when Constraint_Error =>
if (Sin(X)>=0.0 and Cos(X)>= 0.0) or

(Sin(X)< 0.0 and Cos(X)< 0.0)
then

return Float'Last;
else

return -Float'Last;
;

end Tan;

Three levels of ambition:
1. Take control

try to act so program can continue

2. Identify exception for handling elsewhere

3. Ignore

Constraint_Error exception can be detected and

Handle the exception locally; caller never realizes

end if

26

2. Pass exception back

• raise statement in exception handler:

function Tan (X : Float)
return Float is

begin
return Sin(X) / Cos(X);

exception
when Constraint_Error =>

Put_Line (" ");
raise;

end Tan;

27

3. Ignore the exception

of ambition. We are all familiar with
that one!

It is (probably) what we all have been
doing all the time up to now …

– perhaps take some action locally
– identify exception and pass it back to caller

The value of tangent is too big

• No example is needed of the third level

Exceptions in Input/Output A.13
• TEXT_IO defines several exceptions:

Exception Example

data_error invalid data type, data has wrong form

status_error try to open an already open file

mode_error try to read from an output file

name_error no such file

use_error try to open printer for reading

end_error EOF encountered while reading

layout_error SET_COL beyond LINELENGTH limit

device_error hardware failure

29

Reading enumeration values
--Safe I/O (again)
type Days is
function Get_Day return Days is

Local_Day : Days;
Good_Day : Boolean := False:

begin
while not Good_Day loop

begin
Put ("Enter a day name (first 3 letters) : ");
Get (Local_Day);

Good_Day := True;
exception

when Data_Error =>
Put ("Must be first 3 letters of a day name");
New_Line; Skip_Line;

end;
end loop;
Skip_Line;
return Local_Day;

end Get_Day;

(Mon, Tue, Wed, Thu, Fri, Sat, Sun);

-- entered by user
-- loop control

-- while block

-- this point only reached if valid entry given

-- exception handler for while block

-- while block

28

30

Reading enumeration values, with range checks

type Week_Days is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
subtype Work_Days is Week_Days range Mon .. Fri;
subtype Weekend_Days is Week_Days range Sat .. Sun;

procedure Safe_Get_Day (
Out_Day : out Week_Days;
Min : in Week_Days := Work_Days'First;
Max : in Week_Days := Work_Days'Last) is

Local_Day : Week_Days;
Good_Day : Boolean := False;

31

begin
Good_Day loop

begin
Put("Enter an day between ");
Put(Min); Put(" and "); Put(Max); Put(" ");
Get(Local_Day);

if (Local_Day < Min) or (Local_Day > Max) then
raise Data_Error;

else
Good_Day := True;

;

exception
when Data_Error =>

Put_Line("Invalid day!. Good days are ");
for This_Day in Week_Days range Min .. Max loop

Put(This_Day); Put(" ");
;

New_Line; Skip_Line;
end;

;

Skip_Line;
Out_Day := Local_Day;

end Safe_Get_Day;

-- procedure for the safe input of enumeration values

-- local input var
-- loop control

-- safe_get_day
while not

-- while block

-- this point is reached only when input is a day code

end if
-- this point is reached if input is a valid day code
-- between min and max

end loop
-- tidy up terminal

-- protected while block
end loop
-- this point can only be reached when valid value input

-- tidy up terminal handling
-- export input value

32

Reading float values, with range checks
--Safe float I/O

procedure Gen_Float_Input (
Out_Float : out Float;
Min, Max : in Float) is

Local_Float : Float;
Good_One : Boolean := False;

begin
while not Good_One loop

begin
Put("Enter a float in range ");
Put(Min, Exp => 0); Put(" to ");
Put(Max, Exp => 0); Put(" ");

Get(Local_Float);

Good_One:=((Local_Float>=Min) and (Local_Float<=Max));

if not Good_One then
raise Data_Error;

end if;

33

exception
when Data_Error =>

Put_Line();
Skip_Line;

end;
end loop;

input
Skip_Line;

Out_Float := Local_Float;
end Gen_Float_Input;

Reading float values, with range checks

-- local input var
-- loop control

-- gen_float_input

-- protected block of code

-- this point can only be reached if the get
-- did not raise the exception

-- now tested against limits specified

"Invalid input, pls try again "

-- protected block of code

-- this point can only be reached when valid value

-- tidy up terminal handling

-- export input value

34

Opening a file
procedure Open_File (The_File : File_Type) is

Filename : String (1 .. 30);
Namelen : Natural;

begin
Put ("What file do you want to read? ");
Get_Line (Filename, Namelen);
Open (File => The_File, Name => Filename (1 .. Namelen),

Mode => In_File);

exception
when Status_Error =>

Put_Line ("The file is already open");
when Name_Error =>

Put_Line ("There is no file with that name");
when Use_Error =>

Put_Line ("The file cannot be read");
=>

Put_Line ("Unexpected error on opening file");
end Open_File;

35

User defined exceptions 1(4)

Tan_Error : exception;

Example:
procedure Main is
X, Res : Float;
Tan_Error : exception;
function Tan (X : Float)

return Float is
begin

return Sin(X)/Cos(X);
exception

when Numeric_Error =>
raise Tan_Error;

end;
begin

Put (“Enter A Real Number X: “); Get (X);

Put (“Tan(X) is “); Put(Res); New_Line;
exception

when Tan_Error =>

end;

-- safe file opening
in out

when others

• You can declare your own exception types

Res := Tan(X);

Put_Line (“The Tangent is Too Big”);

36

Declaring exceptions in
packages

•

•
prefer to pass an exception back to the caller.

•
too general

– desirable

•
–
–
– best is in a package, along with TAN

37

Example
--package specification
package TRIGONOMETRY is

function SIN (X : FLOAT) return FLOAT;
function COS (X : FLOAT) return FLOAT;
function TAN (X : FLOAT) return FLOAT;
TAN_ERROR : exception;

end TRIGONOMETRY;

--package body
package body TRIGONOMETRY is

function SIN (X : FLOAT) return FLOAT is
begin ... end SIN;

function COS (X : FLOAT) return FLOAT is
begin ... end COS;
function TAN (X : FLOAT) return FLOAT is
begin return SIN(X) / COS(X);
exception

;
end TAN;

end TRIGONOMETRY;

Shows how a package
specification can define an
exception; the package body
can raise that exception when
appropriate; and a user program
can recognize and handle the
exception

NUMERIC_ERROR may arise in tan(x) function

Perhaps too unilateral to handle it locally, so

What to pass back?
– NUMERIC_ERROR is

more specific name (eg TAN_ERROR)

Where to declare TAN_ERROR?
not in function TAN (invisible outside)
not in calling code (belongs with TAN)

when NUMERIC_ERROR => raise TAN_ERROR

38

Example
--user program
with Ada.TEXT_IO, TRIGONOMETRY;
procedure compute_tan is

loop
begin

PUT ("Enter a real number");
exit when END_OF_FILE;
GET (number); SKIP_LINE;

exception
when TAN_ERROR =>

PUT_LINE ("Tangent is too big");
end;

end loop;
end compute_tan;

number, res : FLOAT;

begin -- compute_tan

res := tan(number);
PUT("Tangent is "); PUT(res); NEW_LINE;

