
Introduction to Computers and
Programming

Lecture 11

Recap

•
visible and directly visible at each place
within a program. The visibility rules apply to
both explicit and implicit declarations.
– immediate visibility and use-visibility

• case selector is
when value_list_1 =>

statement(s)_1;
when value_list_2 =>

statement(s)_2;
…

when others =>
statement(s)_n;
;

Prof. I. K. Lundqvist

Reading: FK pp. 199-209, 220-223, 266-267 Sept 29 2003

Scope : determine which declarations are

end case

Iteration

For Statement

• for loop_var in
loop

statement(s);
;

• for i in -1 .. 10 loop
PUT(i); NEW_LINE;

;

for i in 1 .. 10 loop
PUT(i); NEW_LINE;

;

for i in 2 .. n-1 loop
PUT(i); NEW_LINE;

;

• Definite iteration
– FOR statement

• Indefinite iteration
– WHILE statement
– General LOOP statement

low_val .. high_val

end loop

end loop

end loop

end loop

[assignment_average.adb]
[not covered in class]

average number of assignments marked by

period.

marked per month, and display this value.

• Specification

– A program is required to calculate the

a lecturer per month over a 12 month

The program will ask the user for the
number of assignments marked each
month, calculate the average number

Courtesy of Chris Lokan. Used with permission.

[User interface]

No. marked in month 1: xxx
No. marked in month 2: xxx
…
No. marked in month 12: xxx

Average per month is yyy.yy

[Algorithm]

• ASSIGNMENT AVERAGE PROGRAM

• Initialization
– Display heading
– Set total to zero

• Get values over year
– For each month

• Prompt for and get number marked
• Add to total

• Calculate average
• Display average

[Data Design]

NAME TYPE Notes

max_month (const) 12 No of months to
process

assgn_month Integer No of assignments in a
month

total_assgn Integer Total assignments in a
year

this_month Integer Loop parameter

average_assgn Float Average assignment
per month

WHILE Statement
• while test loop

statement(s);
;

Ex: millionaire.adb

structure, to execute at least once
•

while (j < 0) loop
put (“Enter positive j:);
get (j); skip_line;

;

end loop

• While loops may be designed as a repeat

j := -1;

end loop

WHILE Statement

tot := 0;
PUT("Enter j (-1 to exit): ");
GET(j); SKIP_LINE;
while (j /= -1) loop

tot := tot + j;
PUT("Enter j (-1 to exit): ");
GET(j); SKIP_LINE;

;
PUT("Total is "); PUT(tot); NEW_LINE;

While example

'y') to indicate yes, or 'N' (or 'n') to indicate

the program confirms it and terminates.
Any other response results in the prompting
and input being repeated.

You entered No.

• A while loop may not execute at all

end loop

• Specification
– The user is to be prompted to enter 'Y' (or

no. If either of these responses is provided,

• User interface
– Please enter ‘Y’ for yes ‘N’ for no: X

Please enter ‘Y’ for yes ‘N’ for no: N

While example
Algorithm

Sentinel-controlled loops

data
– sentinel : constant := ???;

loop
read (item);

item = sentinel;
process the item;

;

• Do initialization
– Set response to ‘x’

• Get yes no
– While response is neither ‘Y’ nor ‘N’

• Prompt for and get response
• Check input

– Convert ‘y’ to ‘Y’
– Convert ‘n’ to ‘N’

• Confirm input
– If response is ‘Y’

• Display yes confirmation

– If response is ‘N’
• Display no confirmation

• A sentinel value
– A unique value that indicates end-of-data
– It cannot be a value that could occur as

exit when

end loop

Flag-controlled loops

• A flag is a Boolean variable

event has not yet occurred

– flag : boolean;
flag := false;
while not flag loop

do some processing;
if desired event has happened then

flag := True;
;

do some processing;
;

Flag-controlled loops
Example

•
while not DigitRead loop

get (c);
if (c >= ‘0’) and (c <= ‘9’) then

DigitRead := TRUE;
;
;

– A value of False indicates that the desired

– True indicates that it has occurred

end if

end loop

DigitRead := FALSE;

end if
end loop

WHILE vs. FOR

while loop is most general

test, can be made to execute at least once,
or maybe never

• For loops

times to run before loop)
while loop, but

usually not as elegant

WHILE vs. General LOOP

•
with general loops

•
–
–

executing the statements of the loop body

•
–
–

statements before the test (this may be the first
time through the loop)

• The
– Used for indefinite iteration
– By setting value of variables used in the

– Used for definite iteration (know number of

– Can be replaced by a

It is easier to reason with while loops than

While
Obvious where loops exits
Can guarantee the entry test has been passed when

General loop
Sometimes code is simpler
There is no guarantee when executing the

Which loop statement to use?

definite loops, use for

known

indefinite loops, where pre-test is
natural, use while

other indefinite loops, use
general loop

Loop control

• any
loop:
–

•
• before
• before a general loop, or in the statements before the

exit test

•
continuation

• termination
–

•
• must

• For
– Automated control
– Tells reader that number of iterations

• For

– Simpler reasoning

• For

– Less cluttered code

• Usually prefer for and while

There are three aspects to loop control for

initialization of loop parameter(s)
automatic in a for loop

a while loop

– test
automatic in a for loop

• while: test for
general: test for

update loop parameter
not allowed inside for loop

update inside indefinite loop

Loop design

•
then specify the three aspects to loop control.
Approaches to loop design:
–
–

those situations (eg sentinel-controlled loops, flag-
controlled loops)

–
–
–
–

Nested loops

times, and then do that multiple times.

Choose the appropriate loop statement, and

analyze the individual application
recognize standard situations, use standard loops for

use loop templates
definite or indefinite?
when to test for termination?
what is appropriate initialization etc?

• When want to do something multiple

– Printing a 2-dimensional table
– Printing the average mark of several exams

• Programming process
– Design and test inner loop
– Design and test outer loop

Nested loops

outer loop handles each row in turn; the
inner loop handles the columns within each
row.

•
• 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
...
10 100

Nested loops

• print a two-dimensional table:
– the times table for the numbers 1-10. The

User interface

• Algorithm
– Print heading

• While not all columns done
– Print column number

– Print table; for each row
• Print row

– Print row number
– For each column

» Print column number

