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Today

• How to determine Big-O

• Compare data structures and 
algorithms

• Sorting algorithms
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How to determine Big-O

• Partition algorithm into known pieces

• Identify relationship between pieces
– Sequential code (+)
– Nested code (*)

• Drop constants

• Only keep the most dominant factors
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Does Big-O tell the whole story?
• Tx(n) = Ty(n) = O(lg n)

Algorithm 1
setup of algorithm -- takes 50 time units
read n elements into array -- 3 units/element
for i in 1..n loop

do operation1 on A[i] -- takes 10 units
do operation2 on A[i] -- takes  5 units
do operation3 on A[i] -- takes 15 units

Algorithm 2
setup of algorithm   -- takes 200 time units
read n elements into array -- 3 units/element
for i in 1..n loop

do operation1 on A[i] -- takes 10 units
do operation2 on A[i] -- takes  5 units

T1(n)=50+3n+(10+5+15)n = 50+33n

T2(n)=200+3n+(10+5)n = 200+18n
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Searching

• Linear (sequential) search
– Checks every element of a list until a match 

is found
– Can be used to search an unordered list

• Binary search
– Searches a set of sorted data for a 

particular data
– Considerable faster than a linear search
– Can be implemented using recursion or 

iteration
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Linear Search

• If data distributed randomly
– Average case: 

• N/2 comparisons needed

– Best case: 
• values is equal to first element tested

– Worst case: 
• value not in list N comparisons needed

Linear search is O(N)Linear search is O(N)
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Full and Balanced Binary Search Tree

42

17 47

11 19 43 67
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Binary Search

6752474342191711

50 not found

3 comparisons
3 = Log (8)
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Binary Search

• Can be performed on 
– Sorted arrays
– Full and balanced BSTs

• Compares and cuts half the work
– We cut work in ½ each time
– How many times can we cut in half?

Binary search is O(Log N)Binary search is O(Log N)
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Insertion/Shuffling Elements

474342191711

35

47434235191711

Shuffle is O(N)Shuffle is O(N)
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Insertion to a Sorted Array

• Sorted Array
– Finding the right spot – O(Log N)
– Performing the shuffle – O(N)
– Performing the insertion - O(1)

– Total work: O(Log N + N + 1) = O(N)O(Log N + N + 1) = O(N)
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Insertion into a F&B BST
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Insertion into a F&B BST

• Finding the right spot – O(Log N)
• Performing the insertion – O(1)

• Total work: O(Log N + 1) = O(Log N)O(Log N + 1) = O(Log N)
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Sorting Algorithms

• Insertion sort
• Bubble sort
• Selection sort
• …
• Merge sort
• Heap sort
• Quick sort
• …

O(N2) or worse

O(N Log N) or better

In the Worst CaseIn the Worst Case
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Insertion Sort

• Sorted array/list is built one item at a 
time
– Simple to implement
– Efficient on small data sets
– Efficient on already almost ordered data sets
– Minimal memory requirements
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Insertion Sort

8  2  4  9  3  6

2  8  4 9  3  6
2  4  8  9 3  6
2  4  8  9  3 6
2  3  4  8  9  6
2  3  4  6  8  9
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Statement Work
Insertion Sort

InsertionSort(A, n) T(n)

for j in 2..n do c1n 
key:= A[j] c2(n-1)

i  := j-1 c3(n-1)

while i > 0 and A[i] > key c4X

A[i+1]:= A[i] c5(X-(n-1))

i:= i-1 c6(X-(n-1))

A[i+1]:= key c7(n-1)

X = x2 + x3 + … + xn where xi is number of 
while expression evaluations for the  ith for 
loop iteration
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T(n) = c1n + c2(n-1) + c3(n-1) + c4X + 
c5(X - (n-1)) + c6(X - (n-1)) + c7(n-1) 

= c8X + c9n + c10

Running time
– Best case: 

• inner loop never executed - Linear Function

– Worst case: 
• inner loop always executed - X is a quadratic 

function in n

– Average case: 
• all permutations equally likely

Insertion Sort Analysis
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Insertion Sort – O(N2)

• Assume you are sorting 250,000,000 item

N = 250,000,000 N2 = 6.25 * 1016

Assume you can do 1  operation/nanosecond

6.25 * 107 seconds

= 1.98 years
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Merge Sort
MergeSort A[1..n]

1. If the input sequence has only one element
– Return

2. Partition the input sequence into two halves

3. Sort the two subsequences using the same 
algorithm

4. Merge the two sorted subsequences to form 
the output sequence
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Divide and Conquer

• It is an algorithmic design paradigm 
that contains the following steps

– Divide: Break the problem into smaller 
sub-problems

– Recur: Solve each of the sub-problems 
recursively

– Conquer: Combine the solutions of each of 
the sub-problems to form the solution of 
the problem
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Merge Sort
596671217421147

17421147 5966712

1147 1742 6712 596

47 11 42 17 12 67 96 5

4711 4217 6712 596

47421711 9667125

966747421712115
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Merge Sort – O(N * Log N)

• Assume you are sorting 250,000,000 item

N = 250,000,000
N*Log N = 250,000,000 * 28

Assume you can do 1  operation/nanosecond

7.25 seconds
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Merge Sort Analysis

MergeSort(A, left, right) T(n)
if (left < right) O(1)

mid := (left + right) / 2;   O(1)
MergeSort(A, left, mid); T(n/2)
MergeSort(A, mid+1, right);  T(n/2)
Merge(A, left, mid, right); O(n)

Statement Work

T(n) = O(1) when n = 1, 
2T(n/2) + O(n) when n > 1

T(n) = O(1) when n = 1, 
2T(n/2) + O(n) when n > 1

Recurrence EquationRecurrence Equation


