C11 Solutions

1.
Count :=1;
FORI1in1. 10 LOOP
If 1 MOD 2 =0THEN
FORJin1..10 LOOP
Count:= Count + 2;

END LOOP;
ELSE
FORJin1..5L0O0P
Count := Count-1;
END LOOP;
END IF;
END LOOP;

Count = 76.
Count increments by 20 when | is even and decrements by 5 when | is odd.

2. Write an Ada95 program to implement the Euler’s 2™ order integration method? Turn
in a hard copy of your algorithm and code listing and an electronic copy of your code.

C 11 part b ALGORTIHM

Eluer’s 2" order integration — use trapeziodal rule.
Area of a trapezoid under curve = .5*(y1+y2)*delta_x

Algortihm:
Ask user for inputs:
- Coefficients of each polynomial term plus constant
- Upper and Lower Bounds of integration
- Step Size
Calculate number of steps = (upper_bound-lower_bound)/step_size and convert it to an
integer

Loop from 0 to the number of steps using a for loop, performing euler’s second order
approximation

- Integral = Integral + .5*(y1+y2)*step_size

- Yl=Y2

- Y2=Y2 +Step_Size
Print out results

with Ada.Text To;

use Ada.Text Io;

with Ada.Integer Text TIo;
use Ada.Integer Text TIo;
with Ada.Float Text To;
use Ada.Float Text Io:

procedure Second Order_ Euler is
~~-procedure to perform euler's second oreder integration method

--a definite integral is input by the user and is the calculation is
--performed and returned

--only takes in polynomials up to 6th order

--Unified Computers and Programming, Problem Cll b, Fall 2003
--Author: Howard Kleinwaks, based on an algorithm by Phil Springmann
--Last Modified: October 5, 2003

-—-declare wvariables

Order : Integer; --stores order of polynomial
Upper_Bound : Float;
Lower_Bound : Float; --numbers to store the bounds of the integral

First Order Term : Float;
Second_Order Term : Float:
Third Order Term : Float;
Fourth_ Order Term : Float:
Fifth Order Term : Float:
Sixth Order Term : Float;
Constant_ Term : Float:
Integral : Float;

Step_Size : Float; --input value by user to determine step size to use
Number Of_Steps : Float; |
Integer_ Number_Of_Steps : Integer; --need integer number of steps to

use 1n for loop
Low_Step : Float;

High_Step : Float; --variables to represent current x-values (x_i and
X 1+1)
begin -- Second Order Euler

-~get 1nput variables

--take the order of the polynomial and the coefficients

Put ("Please enter the order of the polynomial (between one and six):"
) ;

Get (Item => Order) :;

New_Line;

--check order to make sure it is within the proper bounds

while Order< 1 and Order > 6 loop
Put ("Please enter the order of the polvnomial (between one and six

)2 ") ;
Get (Item => Qrder) :
New Line;
end loop;

~--get coefficients of the polynomial

Put ("Please enter the constant term:"):

Get{Item => Constant Term):

New Line;

Put ("Please enter the coefficent of the lowest order term:"):
Get(Item => First Order Term):

New Line;

Put ("Please enter the coefficent of the next lowest order term:*") :
Get (Item => Second Order Term) :

New _Line:;

Put ("Please enter the coefficent of the next lowest order term:"):
Get (Item => Third Order Term) ;

New Line; |

Put ("Please enter the coefficent of the next lowest order term:"):
Get (Item => Fourth Order Term) :

New Line:

Put ("Please enter the coefficent of the next lowest order term:");
Get (Item => Fifth Order Term);

New Line:

Put ("Please enter the coefficent of the next lowest order term:"):
Get (Item => Sixth Order Term) :

New _Liine;

--get bounds of integration

Put ("Please enter the lower bound:");
Get (Item => Lower Bound) :

New Line;

Put ("Please enter the upper bound:");
Get (Item => Upper_ Bound) ;

New Line;

-—-get step size desired from user
Put ("Please enter the step size:"):
Get(Item => Step_Size);

New Line:

--calculate number of steps

Number_ Of_Steps := (Upper_Bound - Lower_Bound)/Step_ Size;
-—-convert to integer
Integer_Number Of_Steps := Integer (Number_ Of_ Steps);

~--now loop from 0 to the number of steps, performing euler's second o
rder approximation

~--the approximation follows the trapezoidal rule

--area of a trapezoid = .5*(bl + b2)*h, where bl and b2 are the funct
1on values at either end of the step

-—-and h 1s the step size

--need to i1nitialize the value of integral (the result) and Low_Step
and High_Step

Integral := 0.0;
Low_Step := Lower_ Bound;
High Step := Lower_Bound + Step Size;

-

for I in 1..Integer_Number_ Of_ Steps loop
--calculate integral according to following method:
--Integral := Integral + .5*(f(x)+f(x+1l))*Step Size
Integral := Integral + 0.5*((Sixth_Order_Term*High_ step**6 + Fifth
_Order_Term*Low_Step**5 + Fourth_Order_ Term*Low_Step**4
+ Third_ Order_Term*Low_Step**3 + Second_Order_Term*Low_Step*
*2 + First_Order_Term*Low_Step+Constant Term)
+ (Sixth_Order_Term*High_Step**6 + Fifth_Order Term*High Step**
5 + Fourth_Order_Term*High_Step**4
+ Third_Order_Term*High_ Step**3 + Second_Order_ Term*High Ste
p**2 + First_Order_Term*High_ Step+Constant_Term)) *Step_Size;
Low_Step := Low_Step+Step Size;
High_Step High_Step+Step Size;
end loop;
Put ("The i1ntegration is: ");

Put (Integral,

end Second_Order .

Fuler:

Algorithm:

Initialize the counter to 1
Initialize Sumto 0
3. While (counter <= 10) loop
i. Get a number from the user

ii. Add Number to Sum

iii. Increment the Counter
4. Compute the average by dividing sum by 10
5. Display computed average to the user

A

Code Listing
GNAT 3.13p (20000509) Copyright 1992-2000 Free Software Foundation, Inc.

Compiling: c:/docume~2/joeb/desktop/16070/codeso~1/average_with_while.adb (source file time stamp:
2003-10-02 02:41:10)

. -- Program to find the average of 10 numbers using
. -- a While Loop

. -- Programmer : Joe B

. -- Date Last Modified : October 01, 2003

ONOUTAWN R

9. with Ada.Text_lo;

10. with Ada.Float_Text_lo;

11.

12. procedure Average_With_While is

13. Counter : Integer :=1; -- initialize counter to 0
14. Sum : Float :=0.0; -- initializise sum to O

15. Num : Float;-- variable used to get input from the user
16. begin

17. while (Counter <= 10) loop

18. -- get input from the user

19. Ada.Text_lo.Put("Please Enter A Number : ");
20. Ada.Float_Text_lo.Get(Num);

21. Ada.Text_lo.Skip_Line;

22, -- compute sum

23. Sum := Sum + Num;
24, -- increment the counter
25. Counter := Counter +1;
26.

27. end loop;

28.

29. Ada.Text_lo.Put("The Average of Numbers is :");
30. Ada.Float_Text_lo.Put(Sum/10.0);

3L

32. end Average_With_While;

32 lines: No errors

