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Actin filaments 

Develop portable micro sensors to study: 

• Cell mechanical response 

• Cell adhesion 

in different biochemical environments 
to explore mechanotransduction and disease detection 
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Cell membrane 

Basic idea 
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Functionalized 
probe 

A micro spring is used to measure cell force 



actin 

Cell membrane 
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Basic idea 

Functionalized probe contacts a cell and forms 
adhesion site 



actin 

Cell membrane 
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Basic idea 

Probe is moved away from the cell. The cell applies 
a force on the spring. The force is measured from the 
spring deformation and its spring constant. 

The cell may also be compressed or indented. 



Cantilever as a mechanical spring
 

L K (spring constant ) = 3EI/L3 

P d 
P = Kd 

I=moment of inertia = width x depth3/12 

Typical K ~ 10 nN/µm 

Calibration: 
 
1) Resonant frequency, geometry, elastic property
 
2) Comparing with another spring (e.g., AFM)
 



Simple implementation 
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L 
δ 

Κ= 3EI /L3 
F=Kδ 

δ 

Cell attached 
to substrate 

F = cell force = Kδ 
• Force sensor (such as a cantilever) is coated by fibronectin 

• It is calibrated to determine spring constant, K 

• The sensor tip is brought in contact with the cell - focal 
adhesion sites form 

• It is moved away from the cell. The cell force is measured from 
the deformation δ 

Advantages: - Force sensor independent ly calibrated 
- Force is applied at an anchorage site 
- In-situ  observat ion  
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Experimental setup 1 µm  
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MEMS force sensor: beams anchored at both ends 

K = 3.4 nN/µm 

Probe 

Yang and Saif. 
Review of Scientific Instruments 76, 044301 (2005). 

Example 
Flexural springs (1µm wide) 

Figure removed due to copyright restrictions. 

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission. 

http://www.sciencedirect.com
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Endothelial cells in a culture dish with MEMS cantilever 

5 deg3-5 deg 

Schematic of the 
MEMS cantilever 

Inverted 
microscope 

cell 

Example 

Image removed due to copyright restrictions. 
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Force response of an endothelial cell 
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Images removed due to copyright restrictions. 
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Force response of an endothelial cell 
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Images removed due to copyright restrictions. 
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Force response of a monkey kidney fibroblast cell 

-20 

0 

20 

40 

60 

80 

100 

120 

0  10  20  30  40  50  60  70  80  90  

Cell deformation (µm) 

Forward 
Backward 

Fo
rc

e 
(n

N
) 

Reference: Yang and Saif. Experimental Cell Research 305 (2005) 42– 50. 

Cell force response under stretch is 
linear and reversible 
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Cyto-D treatment disrupts force bearing capacity 

Reference: Yang and Saif. Experimental Cell Research 305 (2005) 42– 50. 

Cyto-D disrupts 
actin network 
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Force response of a monkey kidney fibroblast cell 
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Indentation 

Cell response under indentation is 
non-linear and hysteretic 



GFP actin

Mechanism of non-linearity and irreversibility under indentation
 

Image removed due to copyright restrictions. Photograph of GFP actin protein. 
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Actin agglomerates irreversibly under indentation
 

Images removed due to copyright restrictions.�� 
Images of GFP actin undergoing indentation. 

Yang and Saif 

Actabiomaterialia 2006 (in press) 
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45 µm

probe

More evidence of actin agglomeration
 

Images removed due to copyright restrictions.
 
Actin in monkey kidney fibroblast is subjected to indentation.
 

Monkey kidney fibroblast subjected to mechanical indentation (injury simulation). Here actin stress fibers 
are highlighted by green florescent protein (GFP).  In response to indentation, the cell signals  local 
actin agglomeration at discrete locations. Such actin agglomeration is also observed in various physiological 
conditions such as during ischemic attack in kidney cells. This is the first evidence of actin agglomeration due 
to mechanical stimulus (Shengyuan and Saif, Actabiomaterialia 2006, in press).   



Actin agglomeration in physiological condition: ischemic attack
 

Image removed due to copyright restrictions.
 
Figure 5c in Ashworth, Sharon L., et al. "ADF/cofilin Mediates Actin 
 
Cytoskeletal Alterations in LLC-PK Cells During ATP Depletion." 
 
American Journal of Physiology - Renal Physiology 284 (2003): F852-F862.
 

Porcine kidney cells 

Ashworth et al. Am J. Physiol Renal Physiol 284: F852, 2003. 



Why MEMS bio sensors: 

1. Force range: 1-100 nN (natural progression
 
from optical tweezer, magnetic beads, AFM) 
 

1. Flexibility of design (cell contact region may 
be designed in a variety of fashions) 

3. Large cell deformation range (sub µm-10s of µm)
 


