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Outline

* Meaning of the Central Limit Theorem

» Diffusion vs Langevin equation descriptions

(average vs individual)

 Diffusion coefficient and
fluctuation-dissipation theorem



Central Limit Theorem

Y=X,+X,+...+Xy
X, X,, ..., X,y are random variables

E[Y]=E[X|] + E[X,] + ... + E[X}]

It X, X,, ..., X)y are independent random
variables:
var| Y| = var| X, ]| + var| X, ] + ... + var[X,]

Note: var[X] = 6%, = E[ (X- E[X])z]
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It X, X,, ..., X,y are independent random
variables sampled from the same
distribution:

E[Y] = NE[X]
var[Y] = N var[X,] = No?y,

Average of the sum. y = Y/N
E[y] = E[X], var[y] = var[Y]/N*=c?%,/ N

Law of large numbers: as N gets large, the
average of the sum becomes more and
more deterministic, with variance 6%,/ N.



X, X5, ..., Xymay be sampled from
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We know the probability distribution of ¥
1s shifting (NVE[.X]), as well as getting fat
(Nc?y). But how about its shape ?

The central limit theorem says that
irrespective of the shape of X,

Probability
density




Why Gaussian ?

large N 1 Y_NE X -
oY) > - exp(( [2 ), j
\/27TNGX 2Noy,

Gaussian 1s special
(Maxwellian velocity distribution, etc).

While proof 1s involved,
here we note that Gaussian 1s an invariant
shape (attractor in shape space) 1n the
mathematical operation of convolution.
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Diffusion Equation in 1D
J

0,p

Random walker view of diffu

-8,(-Do,p) = Ddp

s10n: 1magine

(a) We release the walker at x=0 at =0,

(b) Walker makes a move of -

-a, with equal

probability, every Ar=1/v from then on.

Mathematically, we say p(x,=0)=0(x).

N=—=vt independent random steps

At

Then, x(¢) = rAxl + Ax, +

.+ A,
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When N=vt >>1,
the central limit theorem applies:

E[x(¢)] = 0, var[x(¢)] = vt var[Ax] = vta?

So we can directly write down p(x(¢)) as

Ps(x,1) = : eXp( - j

2
\/27zva2t 2va‘t

It 1s the probability of finding the walker at x
at time ¢, knowing he was at 0 at time 0.



By plugging in, we can directly verify
P (x,1) satisties
0.p=D0p, p(x,0)=075(x).

2
with macroscopic D 1dentified as %.
Ps(X,t) = : exp al
o J27(2Dr) 2(2Dt)

1s called Green's function solution
to diffusion equation.
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Brownian Motion

|-_-||I §

Courtesy of Microscopy-UK. Used with permission.

Fat droplets suspended in milk (from Dave Walker).
The droplets range in size from about 0.5 to 3 um.




viscous oil
Stokes' law:
‘—> v F=-6mrmv=-Av

mv=F=—Av, v(t=0)=v,

A
~¢

—> v(t)=v,e "

Einstein's Explanation of Brownian Motion

. . my” k. T
Also, equi-partition theorem: { — )= ];

2

In addition to dissipative force, there must be
another, stimulative force.
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my=F,_  +F =yt F(f)

dissipative stimulative/fluctuation

(Fpe(?)) =0
(B () Fpo () = b(t ')

If b(t—1t")=Bo(t—1t"): white noise

Exact Green's function solution of v(?):

w(t) = — dt’FﬂuC(t )e__( -
m

13



—j dte_(tt)j_oodte’i(
= —j dte__(t )j dt'e ™
=——jmé(ﬂm¢

B_ -

<V(f)V(?)>

<j di'F ﬂuc(z)e‘_ ) j

B 2mA

T E () Fy (7))

D "Bs(r -1

——(f —~1')
—tYe™ B

v\H (x) 1s Heaviside step function:

oo [T ifx>0
(=10 ifx<o0

d
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In particular: (v(£)v(z)) = %
m

However, from equilibrium statistical mechanics:
equi-partition theorem:

m <v(t)v(t)> = kT

The ratio between square of stimulative force
and dissipative force 1s fixed, oc T
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A -~
kBT e—;‘f—t‘

m

(v(W(D)) =

Previously, from the Gaussian solution to
0.p=Dop, p(x,0)=75(x):

(x,1) = 1 ex ( X j
Pttt = J27(2D1) Pl 2200

we know 1f the particle 1s released atx =0 at =0
(x(2)x(1)) = 2Dt

x(£) =0+ jo div(t), () = (1)
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%<x(t)x(t)> = 2(x(D)1(1)) = 2 (x()(D))

_ 2 apn=2D
dt

D = {x(t)v(z)) <( [ drv(e )) v(t)>

= [Car' (v(tw(0))
_ j;dz'<v(r')v(0)>

Velocity auto-correlation function: g(¢) = <v(t)v(0)>



Actually, the onset of macroscopic diffusion
(0,p = DO’ p) is only valid only when

t > intrinsic timescale of g(¢) oc —

A
(Same as central limit theorem in random walk)

So the correct formula 1s

D = j: dt' (v(1')v(0))

The above 1s one of the
fluctuation-dissipation theorems.
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.. 1 e
Thermal conductivity: x = T jo <J (0)J q(0)>dt
Electrical conductivity: o = “(J(6)J(0))dt
y QkBTjO<<><>>
. . Q (o
Shear viscosity: 717=—— <rxy(t)rxy(0)>dt

kT o

Fluctuation-dissipation theorem (Green-Kubo
formula) 1s one of the most elegant and
significant results of statistical mechanics. It
relates transport properties (system behavior 1f
linearly perturbed from equilibrium) to the
time-correlation of equilibrium fluctuations. |,



Coming back to diffusion (mass transport):

(vom(D)) = e
m
So D= jooodt’<v(t’)v(0)>: kiT .

% 1s actually the mobility of the particle, when

driven by external (non-thermal) force.

D

1/7 =k,T" 1s called the Einstein relation,

first derived 1n 1905.
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