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Part |l Topics

It's a Quantum World: The Theory of Quantum Mechanics

Quantum Mechanics: Practice Makes Perfect
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Application of Quantum Modeling of Molecules: Solar Thermal Fuels
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Application of Quantum Modeling of Molecules: Hydrogen Storage
From Atoms to Solids

Quantum Modeling of Solids: Basic Properties

Advanced Prop. of Materials:What else can we do!?

Application of Quantum Modeling of Solids: Solar Cells Part |

| O. Application of Quantum Modeling of Solids: Solar Cells Part I

| 1. Application of Quantum Modeling of Solids: Nanotechnology



|l esson outline

® Review

® |nteractive calculations and discussion
on the H?2

® First application of QM modeling:
Solar Thermal Fuels

® |nteractive calculations and discussion
on candidate fuels.



Review: Next? Helium

S

[Hl + Hy + W}%b(f’l, T2)

[Tl Vi T+ Vo + W]¢(F1,F2)

cannot be solved analytically problem!

H = Ev

Ep (71, 72)
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Review: | he Multi-
Electron Hamiltonian

Remember 72 o)

the good old days of the \vE € } ¢(7?) — E’l,b(’?)
| -electron H-atom?? 2Mm 4TeQTr
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kinetic energy of ions kinetic energy of electrons electron-electron interaction
| |

potential energy of ions electron-ion interaction

Multi-Atom-Multi-Electron Schrodinger Equation
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Born-Oppenheimer Approximation

Electrons and nuclei
as ‘separate’” systems
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© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.
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Born-Oppenheimer Approximation

Electrons and nuclei
as ‘‘separate’” systems

2 N

< ... but this is an
approximation!

* electrical resistivity

* superconductivity

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.
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Review: Solutions

quantum chemistry

Moller-Plesset

perturbation theory
MP2

Va

density
functional
theory

theory CCSD(T)

coupled cluster




Review:Why DFT?
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Image by MIT OpenCourseWare.



Review: DFT

c,’(,'\O“.'
qave R o Walter
Y = P(TF1,T2,. .., TN) comm? Kohn
n — N ('r) (7'@/);(‘/«0/7 D FT

© unknown. All rights reserved. This content is excluded from
our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faqg-fair-use/.

All aspects of the electronic structure of a system
of interacting electrons, in the ground state, in
an “external” potential, are determined by n(r)
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Review: DFT

electron density The ground-state energy is a
| functional
of the electron density.

E[n] — T[n] + ‘/jl,z + %e [n] + Vee [n]
kinetic ion-electron
ion-ion electron-electron

The functional is minimal at the exact
ground-state electron density n(r)

The functional exists... but it is unknown!

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Review: DFT

E[n] = T[n| + Vii + Vie[n] + Vee[n]

kinetic ion-ion ion-electron electron-electron

electron density n(7) = ) |¢:(7)|?

Eground state — qun E[n]

Find the wave functions that minimize the
energy using a functional derivative.



Review: DFT

Finding the minimum leads to
Kohn-Sham equations

R I |
gV V(0| 6:(F) = ()
] I
E TN
=V |/|7_ Y 4 Vaolna(P)]
ion potential Hartree potential  exchange-correlation

potential

equations for non-interacting electrons



Review: DFT

Only one problem: vxc not known!

approximations necessary

A Ta

local density general gradient

approximation approximation
LDA GGA



Review: Self-consistent cycle

Kohn-Sham equations
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Review: DFT calculations

tota
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tota

scf loop

energy =
energy =
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energy =

0000 0000000000
AP DADNA
0000 0000000000
et ] e e
WUWWNIROW
NN =~V
LNV NV OONIO00N
00 00UT1000O
NOY =L WOoOW A
ONO—O R

At the end we get:

Structure

exiting loop;
result precise enough

Y/

|) electronic charge density

2) total energy

4//\\>

Vibrational

Elastic
constants

properties



Review: Basis functions

: M . p— c .
Matrix eigenvalue equation: ¥ Z i Pi
/
Hvy = FE expansion in
w ¢ orthonormalized basis

functions
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Review: Plane waves as
basis functions

plane wave expansion: ~ ¥(7) = ) Cj[eigjor}
J

plane wave

Cutoff for a maximum G is necessary and results in a finite basis set.

Plane waves are periodic,

O

thus the wave function is periodic! ' o
Y Y, P2
O
Image by MIT OpenCourseWare.
periodic crystals: atoms, molecules:

Perfect!!! OK but be careful!!!



First Application Example:
Solar Chemical Fuels




Materials will determine
the future of renewable energy

Solar PV

Biofuels

Batteries

Solar Thermal

. SWaanm

\

Thermoelectrics © D. J. Paul; hydrogen storage © Berkeley Lab; other images © sources unknown. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.
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The Materials Desigh Age

* Stone Age

*lron Age

* Bronze Age

* Industrial Age

* Plastic Age

* Silicon Age

 Materials
Design

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.
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Let’s look at a single element:

carbon

Nanotube architecture © John Hurt; graphene integrated circuit © Raghu Murali; other images © sources unknown. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Carbon in Energy to Date

One Barrel of oil

(159 liters) =
|.73 MWh of energy.

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Same C: 10° X Improvement

That same 1 barrel could be used to make the
plastic needed for thin-film solar cells.

© sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

The solar cells could generate ~16,000 MWh of

energy over their lifetime, or 10,000 X as much
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Solar Resource

© Richard Perez. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Perez et al.
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Solar Energy Harvesting

Photovoltaics

© source unknown. All rights reserved.

Photosynthesis

» Oxygen
[ _» Yo

Carbon
Dioxide

PV o

q

Glucose
Water

© source unknown. All rights reserved.
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Solar Thermal

Crescent Dunes, NV © source unknown. All rights reserved.

Solar Thermal Fuels

Ve

L Charging

Discharging

Copyrighted content on this page is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Solar to Heat

Hot Water

-
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Solar Towers (a.k.a. “Power Towers”)

From left (clockwise): SES SunCatcher solar dish © Stirling Energy Systems, barrels, reflectors, parabolic troughs, PS10 in Seville © sources unknown.
All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Solar Thermal: Sunlight-->Heat: Concentrating

PS10, 11 MW Solar Tower
(Sanlucar la Mayor, Seville)

Total Capacity in Operation [GW¢|], [GW,] and Produced Energy [TWhe[], [TWh,], 2006

heat power
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Figure 2: Total capacity in operation [GW,], [GW] 2006 and annually energy generated [TWhg], [TWhy,].
Sources: EPIA, GEWC, EWEA, EGEC, REN21 and IEA SHC 2008

Left: PS10, 11 MW Solar Tower in Sanlucar la Mayor, Seville © source unknown. Right: from Weiss, W. I. Bergmann, and G. Faninger. "Solar heat

worldwide 2008: Markets and contributions to the ener

supply 2006" © International Energy Agency. All rights reserved. This content is

excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Challenges with Solar Thermal Power:

e Losses in storage
e Auxiliary heating

e Highly reflective coatings + tracking

e Large footprint and cost

e Not transportable, no distribution “as heat”


http://ocw.mit.edu/help/faq-fair-use/
http://www.iea-shc.org/solar-heat-worldwide
http://www.iea-shc.org/solar-heat-worldwide

USA has not widely
adopted Solar
Water Heating.
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* France: includes Overseas Departments
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Figure 8. Solar Hot Water/Heating Capacity

Tunisia

France*

Existing, Selected Countries, 2006

Total = 105 gigawatts-thermal

Turkey 6.3%

Japan 4.5%

Israel 3.6%

Brazil 2.1% >
United States 1.7%
Australia 1.2%

India 1.1%

——— South Africa 0.2%

Other 1.9%

REN21. 2008. “Renewables 2007 Global Status Report.
"© Deutsche GTZ GmbH. "All rights reserved.
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Figure 6: Total capacity of glazed flat-plate and evacuated tube collectors
in operation at the end of 2006 in kW4, per 1,000 inhabitants

From Weiss, W. I. Bergmann, and G. Faninger. "Solar heat worldwide 2008: Markets and contributions to the energy supply 2006." © International Energy

Agency. Copyrighted content on this page is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Some Challenges with Solar Thermal

»|_osses In storage
= Auxiliary heating

= Highly reflective (and clean)
coatings

11 MW Solar Tower in Sanlucar la Mayor, Seville © source unknown. All rights

| TraC kl n g CO m po n e ntS reserved. This content is excluded from our Creative Commons license. For

more information, see http://ocw.mit.edu/help/fag-fair-use/.

»|_arge storage facllities

= Not transportable, can’t be
distributed “as heat”
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Solar-Chemical :
Heat stored in chemical bonds
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Old Idea,
BUT: rapid
degradation
for ALL

%

Discharging \’\/\/\\/l\(v



Blast from the past (70’s/80’s)...

hv

— > + 1.14 eV/molecule

Norbornadiene Quadricyclane

BUT: Poor cycling, rapid degradation for ALL cases.

“... a photochemical solar energy storage
plant, although technically feasible, is not
economically justified.”

Ind. Eng. Chem. Prod. Res. Dev., 1983, 22 (4), pp 627—-633



Decomposition products

Quadricyclane:

Starts to decompose
at ~¥500 K

Norbornadiene:

Starts to decompose
at ~“600K, or with
repeated cycling

Cyclopentadiene  Acetylene

(acetylene elimination via

Cycloheptatriene
Y P _/ reverse Diels-Alder)

@Iuene

Stable up to ~1000 K J. Phys. Chem. A 102, 9202-9212 (1998)



Efforts to prevent decomposition

Images removed due to copyright restrictions. See article: Alexander D Dubonosov et al. Russian Chemical Reviews 71, no. 11 (2002): 917-27.

“donor-acceptor” norbornadienes: ~103 cycles

2,3-disubstituted norbornadienes:
can be cycled “many times”

No magic bullet — always a trade-off between:

" quantum yield

" absorption efficiency

= stored energy

" thermal stability of the quadricyclane
= cyclability

Russian Chem. Rev. 71, 917-927 (2002)


http://iopscience.iop.org/0036-021X/71/11/R04/pdf/0036-021X_71_11_R04.pdf

Why revisit solar thermal fuels
now?

Computational power Technology for

for high-throughput + atomic-scale

materials design engineering
Rapid computational Potential to synthesize
screening of thousands of systems desighed with
materials atomic-scale control

Example: Time to perform . — .
calculations for 100.000 The time is ripe to tackle this

known crystalline materials: generation-old concept with
I” of science/

a new “arsena
technology capabilities.

1980: 30 years
2012: few days




A novel approach to solar
thermal fuels

There are many, many photoactive
molecules...

...that are terrible solar thermal fuels.

ATl hv

E/Z-
Stilbene

Can we turn them into good ones?


asi122
Line


A new approach: combine
photomolecule with template

2“ e
charged

excited state

uncharged




The azobenzene/CNT system

" Already synthesized™

" Photoactivity
experimentally
demonstrated™

= Not previously
considered for energy
storage

*e.g., see Feng, et. al, J. Appl. Phys. (2007); _
Simmons et. al, PRL (2007) trans aZObenzene/CNT



=

linker azobenzene

carbon nanotube

Role of the CNT template




linker azobenzene

carbon nanotube

Role of the CNT template
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Intermolecular Separation (A)

Rigid substrate — fixes inter-molecular
distances over long range, enabling:

= steric inhibition

= t-stacking

= hydrophobic interactions

Enables design of specific
intermolecular interactions — not
available in free azobenzene




>
oT0)
.
)
c
LL]
L
.
§
(7))
L
.
O
ad
(V)

\ ortho meta para

J

Y
(no OH substitutions)

% ortho meta para

J

Y
(2 OH substitutions)

ortho

N

(3 OH)

orientation, H-bonds packing gas phase



Energy density comparison

Y
-

system state energy density (Wh/L)
Ru-fulvalene solution (toluene) 0.02
azobenzene solution (H,O) 0.000002
azobenzene powder 90
azobenzene/CNT soln. or powder up to 690

Li-ion battery 200-600




New Materials for Solar
Thermal Fuels




Solar Thermal Fuel
Applications

e Solar autoclave: developing countries
e Medical sanitation

e Milk pasteurization: rural

e Thin film window heating supplement
* On-site storage: power generation

e Gas/oil industry

e Military off-grid heat

e Building heating

e NASA/maritime

e CSP auxiliary heat supply

e De-icing (windows, planes, power lines)



The Case for Solar Cookers

Problems with Cooking Off-Grid
» Cooking fuel (e.g., wood) is
increasingly scarce, expensive,
and time-intensive to find
» Smoke in not-well ventilated areas
causes respiratory problems

Existing Solar Ovens
» Can only cook while the sun is out
» Are cumbersome and heavy to
transport
» Cannot be turned ‘on’ and ‘off’

Images of outdoor cookers and solar oven © sources unknown. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/fag-fair-use/.
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Solar Cooker: Using the Sun
to Cook at Night

o < > Stove Top
Fuel Flow ‘

During
Charging Fuel Flow l

for _
‘V cooking
Day Charging Night Cooking

e Charging: slow flow through solar collector during the day.

® Cooking: device is turned upside down.
e Cost estimate <5200. Weight=<5 kg, floor space=1 sq. ft.
e 5 hours of charge time = boil liters of water or cook at 300C for ~1 hour.

47



Materials Design Full Cycle

Synthesis Prototype

Simulation

Grossman Group, MIT.



So Why do We Need QM?

excited state

Solar Radiation Spectrum
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Solar radiation spectrum © Robert A. Rohde/Global Warming Art. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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