
DRAFT V1.2

From

Math, Numerics, & Programming

(for Mechanical Engineers)

Masayuki Yano
James Douglass Penn
George Konidaris
Anthony T Patera

September 2012

© The Authors. License: Creative Commons Attribution-Noncommercial-Share Alike 3.0
(CC BY-NC-SA 3.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original authors and MIT OpenCourseWare source
are credited; the use is non-commercial; and the CC BY-NC-SA license is
retained. See also http://ocw.mit.edu/terms/.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://ocw.mit.edu/terms/

Contents

V (Numerical) Linear Algebra 2: Solution of Linear Systems	 365

24 Motivation	 367
24.1 A Robot Arm . 367
24.2 Gaussian Elimination and Sparsity . 368
24.3 Outline . 369

25 Linear Systems	 371
25.1 Model Problem: n = 2 Spring-Mass System in Equilibrium 371

25.1.1	 Description . 371
25.1.2	 SPD Property . 373

25.2 Existence and Uniqueness: n = 2 . 375
25.2.1	 Problem Statement . 375
25.2.2	 Row View . 375
25.2.3	 The Column View . 377
25.2.4	 A Tale of Two Springs . 379

25.3 A “Larger” Spring-Mass System: n Degrees of Freedom 383
25.4 Existence and Uniqueness: General Case (Square Systems) 385

26 Gaussian Elimination and Back Substitution	 387
26.1 A 2 × 2 System (n = 2) . 387
26.2 A 3 × 3 System (n = 3) . 389
26.3 General n × n Systems . 392
26.4 Gaussian Elimination and LU Factorization . 394
26.5 Tridiagonal Systems . 395

27 Gaussian Elimination: Sparse Matrices	 399
27.1 Banded Matrices . 399
27.2 Matrix-Vector Multiplications . 401
27.3 Gaussian Elimination and Back Substitution . 402

27.3.1	 Gaussian Elimination . 402
Densely-Populated Banded Systems . 402
“Outrigger” Systems: Fill-Ins . 403

27.3.2	 Back Substitution . 405
Densely-Populated Banded Systems . 406
“Outrigger” . 406

27.4 Fill-in and Reordering . 406
27.4.1	 A Cyclic System . 406
27.4.2	 Reordering . 407

27.5 The Evil Inverse . 409

3

28 Sparse Matrices in Matlab	 413
28.1 The Matrix Vector Product . 413

28.1.1	 A Mental Model . 413
Storage . 413
Operations . 414

28.1.2	 Matlab Implementation . 415
Storage . 415
Operations . 418

28.2 Sparse Gaussian Elimination . 418

4

364

Unit V

(Numerical) Linear Algebra 2:
Solution of Linear Systems

365

Chapter 24

Motivation

We thank Dr Phuong Huynh of MIT for generously developing and sharing the robot arm model,
finite element discretization, and computational results reported in this chapter.

24.1 A Robot Arm

In the earlier units we have frequently taken inspiration from applications related to robots —
navigation, kinematics, and dynamics. In these earlier analyses we considered systems consisting
of relatively few “lumped” components and hence the computational tasks were rather modest.
However, it is also often important to address not just lumped components but also the detailed
deformations and stresses within say a robot arm: excessive deformation can compromise perfor­
mance in precision applications; and excessive stresses can lead to failure in large manufacturing
tasks.

The standard approach for the analysis of deformations and stresses is the finite element (FE)
method. In the FE approach, the spatial domain is first broken into many (many) small regions
denoted elements: this decomposition is often denoted a triangulation (or more generally a grid or
mesh), though elements may be triangles, quadrilaterals, tetrahedra, or hexahedra; the vertices of
these elements define nodes (and we may introduce additional nodes at say edge or face midpoints).
The displacement field within each such element is then expressed in terms of a low order polyno­
mial representation which interpolates the displacements at the corresponding nodes. Finally, the
partial differential equations of linear elasticity are invoked, in variational form, to yield equilibrium
equations at (roughly speaking) each node in terms of the displacements at the neighboring nodes.
Very crudely, the coefficients in these equations represent effective spring constants which reflect
the relative nodal geometric configuration and the material properties. We may express this system
of n equations — one equation for each node — in n unknowns — one displacement (or “degree of
freedom”) for each node — as Ku = f , in which K is an n × n matrix, u is an n × 1 vector of the
unknown displacements, and f is an n × 1 vector of imposed forces or “loads.”1

We show in Figure 24.1 the finite element solution for a robot arm subject only to the “self-load”
induced by gravity. The blue arm is the unloaded (undeformed) arm, whereas the multi-color arm
is the loaded (deformed) arm; note in the latter we greatly amplify the actual displacements for
purposes of visualization. The underlying triangulation — in particular surface triangles associated

1 In fact, for this vector-valued displacement field, there are three equations and three degrees of freedom for each
(geometric) node. For simplicity we speak of (generalized) nodes equated to degrees of freedom.

367

DRAFT V1.2 © The Authors. License: Creative Commons BY-NC-SA 3.0 .

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Figure 24.1: Deflection of robot arm.

with volumetric tetrahedral elements — is also shown. In this FE discretization there are n = 60,030
degrees of freedom (for technical reasons we do not count the nodes at the robot shoulder). The issue
is thus how to effectively solve the linear system of equations Ku = f given the very large number
of degrees of freedom. In fact, many finite element discretizations result not in 105 unknowns but
rather 106 or even 107 unknowns. The computational task is thus formidable, in particular since
typically one analysis will not suffice — rather, many analyses will be required for purposes of
design and optimization.

24.2 Gaussian Elimination and Sparsity

If we were to consider the most obvious tactic — find K−1 and then compute K−1f — the result
would be disastrous: days of computing (if the calculation even completed). And indeed even if
we were to apply a method of choice — Gaussian elimination (or LU decomposition) — without
any regard to the actual structure of the matrix K, the result would still be disastrous. Modern
computational solution strategies must and do take advantage of a key attribute of K — sparseness.2

In short, there is no reason to perform operations which involve zero operands and will yield zero
for a result. In MechE systems sparseness is not an exceptional attribute but rather, and very
fortunately, the rule: the force in a (Hookean) spring is just determined by the deformations
of nearest neighbors, not by distant neighbors; similar arguments apply in heat transfer, fluid
mechanics, and acoustics. (Note this is not to say that the equilibrium displacement at one node
does not depend on the applied forces at the other nodes; quite to the contrary, a force applied at
one node will yield nonzero displacements at all the nodes of the system. We explore this nuance
more deeply when we explain why formation of the inverse of a (sparse) matrix is a very poor idea.)

We present in Figure 24.2 the structure of the matrix K: the dots indicate nonzero entries
in the matrix. We observe that most of the matrix elements are in fact zero. Indeed, of the
3,603,600,900 entries of K, 3,601,164,194 entries are zero; put differently, there are only 2,436,706

2Note in this unit we shall consider only direct solution methods; equally important, but more advanced in terms
of formulation, analysis, and robust implementation (at least if we consider the more efficient varieties), are iterative
solution methods. In actual practice, most state-of-the-art solvers include some combination of direct and iterative
aspects. And in all cases, sparsity plays a key role.

368

Courtesy of Dr. Phuong Huynh. Used with permission.

0

1

2

3

4

5

6

x 104

0 1 2 3 4 5 6
x 104

Figure 24.2: Structure of stiffness matrix K.

nonzero entries of K — only 0.06% of the entries of K are nonzero. If we exploit these zeros, both
in our numerical approach and in the implementation/programming, we can now solve our system
in reasonable time: about 230 seconds on a Mac laptop (performing a particular version of sparse
Gaussian elimination based on Cholesky factorization). However, we can do still better.

In particular, although some operations “preserve” all sparsity, other operations — in particular,
Gaussian elimination — result in “fill-in”: zero entries become nonzero entries which thus must
be included in subsequent calculations. The extent to which fill-in occurs depends on the way in
which we order the equations and unknowns (which in turn determines the structure of the matrix).
There is no unique way that we must choose to order the unknowns and equations: a particular
node say near the elbow of the robot arm could be node (column) “1” — or node (column) “2,345”;
similarly, the equilibrium equation for this node could be row “2” — or row “58,901”.3 We can
thus strive to find a best ordering which minimizes fill-in and thus maximally exploits sparsity. In
fact, this optimization problem is very difficult, but there are efficient heuristic procedures which
yield very good results. The application of such a heuristic to our matrix K yields the new (that is,
reordered) matrix K ' shown in Figure 24.3. If we now reapply our sparse Cholesky approach the
computational time is now very modest — only 7 seconds. Hence proper choice of algorithm and
an appropriate implementation of the algorithm can reduce the computational effort from days to
several seconds.

24.3 Outline

In this unit we first consider the well-posedness of linear systems: n equations in n unknowns. We
understand the conditions under which a solution exists and is unique, and we motivate — from a
physical perspective — the situations in which a solution might not exist or might exist but not be

3For our particular problem it is best to permute the unknowns and equations in the same fashion to preserve
symmetry of K.

369

Courtesy of Dr. Phuong Huynh. Used with permission.

0

1

2

3

4

5

6

x 104

0 1 2 3 4 5 6
x 104

Figure 24.3: Structure of reordered stiffness matrix K ' .

unique.
We next consider the basic Gaussian eliminate algorithm. We then proceed to Gaussian elimi­

nation for sparse systems — motivated by the example and numerical results presented above for
the robot arm. Finally, we consider the Matlab implementation of these approaches. (Note that
all results in this chapter are based on Matlab implementations.)

We notably omit several important topics: we do not consider iterative solution procedures; we
do not consider, except for a few remarks, the issue of numerical stability and conditioning.

370

Courtesy of Dr. Phuong Huynh. Used with permission.

Chapter 25

Linear Systems

25.1 Model Problem: n = 2 Spring-Mass System in Equilibrium

25.1.1 Description

We will introduce here a simple spring-mass system, shown in Figure 25.1, which we will use
throughout this chapter to illustrate various concepts associated with linear systems and associated
solution techniques. Mass 1 has mass m1 and is connected to a stationary wall by a spring with
stiffness k1. Mass 2 has mass of m2 and is connected to the mass m1 by a spring with stiffness k2.

We denote the displacements of mass 1 and mass 2 by u1 and u2, respectively: positive values
correspond to displacement away from the wall; we choose our reference such that in the absence
of applied forces — the springs unstretched — u1 = u2 = 0. We next introduce (steady) forces
f1 and f2 on mass 1 and mass 2, respectively; positive values correspond to force away from the
wall. We are interested in predicting the equilibrium displacements of the two masses, u1 and u2,
for prescribed forces f1 and f2.

We note that while all real systems are inherently dissipative and therefore are characterized not
just by springs and masses but also dampers, the dampers (or damping coefficients) do not affect
the system at equilibrium — since d/dt vanishes in the steady state — and hence for equilibrium
considerations we may neglect losses. Of course, it is damping which ensures that the system
ultimately achieves a stationary (time-independent) equilibrium.1

wall

kk11

ff11

uu11

mm11

ff22

uu22

mm22

kk22

“free”

Figure 25.1: A system of two masses and two springs anchored to a wall and subject to applied
forces.

1In some rather special cases — which we will study later in this chapter — the equilibrium displacement is indeed
affected by the initial conditions and damping. This special case in fact helps us better understand the mathematical
aspects of systems of linear equations.

371

DRAFT V1.2 © The Authors. License: Creative Commons BY-NC-SA 3.0 .

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

wall

kk11

mm11 mm22

kk22

applied force on mass 1:1: (+)(+)ff11

uu22 −− uu11spring stretched

1:1: kk22((uu22 −− uu11))force on mass
⇓

spring stretched uu11

1:1:−−kk11 uu11force on mass
⇓

Figure 25.2: Forces on mass 1.

mm11

kk22

applied force on mass 2:2: (+)(+)ff22

uu22 −− uu11spring stretched
⇓

mm22

2:2:force on mass kk22((uu22 −− uu11))−−

Figure 25.3: Forces on mass 2.

We now derive the equations which must be satisfied by the displacements u1 and u2 at equilib­
rium. We first consider the forces on mass 1, as shown in Figure 25.2. Note we apply here Hooke’s
law — a constitutive relation — to relate the force in the spring to the compression or extension
of the spring. In equilibrium the sum of the forces on mass 1 — the applied forces and the forces
due to the spring — must sum to zero, which yields

f1 − k1 u1 + k2(u2 − u1) = 0 .

(More generally, for a system not in equilibrium, the right-hand side would be m1ü1 rather than
zero.) A similar identification of the forces on mass 2, shown in Figure 25.3, yields for force balance

f2 − k2(u2 − u1) = 0 .

This completes the physical statement of the problem.
Mathematically, our equations correspond to a system of n = 2 linear equations, more precisely,

2 equations in 2 unknowns:

(k1 + k2) u1 − k2 u2 = f1 , (25.1)

−k2 u1 + k2 u2 = f2 . (25.2)

Here u1 and u2 are unknown, and are placed on the left-hand side of the equations, and f1 and f2 are
known, and placed on the right-hand side of the equations. In this chapter we ask several questions
about this linear system — and more generally about linear systems of n equations in n unknowns.
First, existence: when do the equations have a solution? Second, uniqueness: if a solution exists, is
it unique? Although these issues appear quite theoretical in most cases the mathematical subtleties
are in fact informed by physical (modeling) considerations. In later chapters in this unit we will
ask a more obviously practical issue: how do we solve systems of linear equations efficiently?

But to achieve these many goals we must put these equations in matrix form in order to best
take advantage of both the theoretical and practical machinery of linear algebra. As we have already

372

addressed the translation of sets of equations into corresponding matrix form in Unit III (related
to overdetermined systems), our treatment here shall be brief.

We write our two equations in two unknowns as Ku = f , where K is a 2×2 matrix, u = (u1 u2)
T

is a 2 × 1 vector, and f = (f1 f2)
T is a 2 × 1 vector. The elements of K are the coefficients of the

equations (25.1) and (25.2):

unknown known ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎝
k1 + k2 −k2 ⎠ ⎝

u1 ⎠ = ⎝
f1 ⎠ · · ·

← Equation (25.1)
.

−k2 k2 u2 f2 ← Equation (25.2) (25.3)

K u f
2 × 2 2 × 1 2 × 1

We briefly note the connection between equations (25.3) and (25.1). We first note that Ku = F
implies equality of the two vectors Ku and F and hence equality of each component of Ku and
F . The first component of the vector Ku, from the row interpretation of matrix multiplication,2

is given by (k1 + k2)u1 − k2u2; the first component of the vector F is of course f1. We thus
conclude that (Ku)1 = f1 correctly produces equation (25.1). A similar argument reveals that the
(Ku)2 = f2 correctly produces equation (25.2).

25.1.2 SPD Property

We recall that a real n × n matrix A is Symmetric Positive Definite (SPD) if A is symmetric

AT = A , (25.4)

and A is positive definite
v TAv > 0 for any v = 0 . (25.5)

Note in equation (25.5) that Av is an n × 1 vector and hence vT(Av) is a scalar — a real number.
Note also that the positive definite property (25.5) implies that if vTAv = 0 then v must be the zero
vector. There is also a connection to eigenvalues: symmetry implies real eigenvalues, and positive
definite implies strictly positive eigenvalues (and in particular, no zero eigenvalues).

There are many implications of the SPD property, all very pleasant. In the context of the
current unit, an SPD matrix ensures positive eigenvalues which in turn will ensure existence and
uniqueness of a solution — which is the topic of the next section. Furthermore, an SPD matrix
ensures stability of the Gaussian elimination process — the latter is the topic in the following
chapters. We also note that, although in this unit we shall focus on direct solvers, SPD matrices
also offer advantages in the context of iterative solvers: the very simple and efficient conjugate
gradient method can be applied (only to) SPD matrices. The SPD property is also the basis of
minimization principles which serve in a variety of contexts. Finally, we note that the SPD property
is often, though not always, tied to a natural physical notion of energy.

We shall illustrate the SPD property for our simple 2 × 2 matrix K associated with our spring
system. In particular, we now again consider our system of two springs and two masses but now
we introduce an arbitrary imposed displacement vector v = (v1 v2)

T, as shown in Figure 25.4. In
this case our matrix A is given by K where

2In many, but not all, cases it is more intuitive to develop matrix equations from the row interpretation of matrix
multiplication; however, as we shall see, the column interpretation of matrix multiplication can be very important
from the theoretical perspective.

373

� �

wall

kk11

vv11 vv22

kk22

v1

v = any “imposed” displacement
v2

Figure 25.4: Spring-mass system: imposed displacements v.

k1 + k2 −k2

K = .
−k2 k2

We shall assume that k1 > 0 and k2 > 0 — our spring constants are strictly positive. We shall
return to this point shortly.

We can then form the scalar vTKv as
T

k1 + k2 −k2 v1
v TKv = v

−k2 k2 v2
(k1 + k2)v1 −k2v2

= (v1 v2)
−k2v1 k2v2

Kv

2 2 = v1 (k1 + k2) − v1v2k2 − v2v1k2 + v2 k2

2 2 2 = v1 k1 + v1 − 2v1v2 + v k22

2 = k1v1 + k2(v1 − v2)2 .

We now inspect this result.
In particular, we may conclude that, under our assumption of positive spring constants, vTKv ≥

0. Furthermore, vTKv can only be zero if v1 = 0 and v1 = v2, which in turn implies that vTKv
can only be zero if both v1 and v2 are zero — v = 0. We thus see that K is SPD: vTKv > 0 unless
v = 0 (in which case of course vTKv = 0). Note that if either k1 = 0 or k2 = 0 then the matrix is
not SPD: for example, if k1 = 0 then vTKv = 0 for any v = (c c)T , c a real constant; similarly, if
k2 = 0, then vTKv = 0 for any v = (0 c)T , c a real constant.

We can in this case readily identify the connection between the SPD property and energy. In
particular, for our spring system, the potential energy in the spring system is simply 1 vTKv:2

PE (potential/elastic energy) =

1 1 12k1v + k2(v2 − v1)2 = v TAv > 0 (unless v = 0) ,12 2 2
energy in energy in
spring 1 spring 2

where of course the final conclusion is only valid for strictly positive spring constants.

374

Finally, we note that many MechE systems yield models which in turn may be described by SPD
systems: structures (trusses, . . .); linear elasticity; heat conduction; flow in porous media (Darcy’s
Law); Stokes (or creeping) flow of an incompressible fluid. (This latter is somewhat complicated
by the incompressibility constraint.) All these systems are very important in practice and indeed
ubiquitous in engineering analysis and design. However, it is also essential to note that many other
very important MechE phenomena and systems — for example, forced convection heat transfer,
non-creeping fluid flow, and acoustics — do not yield models which may be described by SPD
matrices.

25.2 Existence and Uniqueness: n = 2

25.2.1 Problem Statement

We shall now consider the existence and uniqueness of solutions to a general system of (n =) 2
equations in (n =) 2 unknowns. We first introduce a matrix A and vector f as ⎛ ⎞

A11 A12 ⎝ ⎠2 × 2 matrix A =
A21 A22

;⎛ ⎞
f1 ⎝ ⎠2 × 1 vector f =
f2

our equation for the 2 × 1 unknown vector u can then be written as ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎫
A11 A12 u1 f1 A11u1 + A12u2 = f1 ⎬

Au = f , or ⎝ ⎠⎝ ⎠ = ⎝ ⎠ , or . ⎭A21 A22 u2 f2 A21u1 + A22u2 = f2

Note these three expressions are equivalent statements proceeding from the more abstract to the
more concrete. We now consider existence and uniqueness; we shall subsequently interpret our
general conclusions in terms of our simple n = 2 spring-mass system.

25.2.2 Row View

We first consider the row view, similar to the row view of matrix multiplication. In this perspective
we consider our solution vector u = (u1 u2)

T as a point (u1, u2) in the two dimensional Cartesian
plane; a general point in the plane is denoted by (v1, v2) corresponding to a vector (v1 v2)

T . In
particular, u is the particular point in the plane which lies both on the straight line described by
the first equation, (Av)1 = f1, denoted ‘eqn1’ and shown in Figure 25.5 in blue, and on the straight
line described by the second equation, (Av)2 = f2, denoted ‘eqn2’ and shown in Figure 25.5 in
green.

We directly observe three possibilities, familiar from any first course in algebra; these three
cases are shown in Figure 25.6. In case (i), the two lines are of different slope and there is clearly
one and only one intersection: the solution thus exists and is furthermore unique. In case (ii) the
two lines are of the same slope and furthermore coincident: a solution exists, but it is not unique
— in fact, there are an infinity of solutions. This case corresponds to the situation in which the
two equations in fact contain identical information. In case (iii) the two lines are of the same slope
but not coincident: no solution exists (and hence we need not consider uniqueness). This case
corresponds to the situation in which the two equations contain inconsistent information.

375

uu ==
uu11

uu22

vv11

vv22

eqn 11

AA1111vv11++AA1212vv22 == ff11

or vv22 ==
ff11

AA1212
−− AA1111

AA1212
vv11

AA2121vv11++AA2222vv22 == ff22

or vv22 ==
ff22

AA2222
−− AA2121

AA2222
vv11

eqn 22

Figure 25.5: Row perspective: u is the intersection of two straight lines.

eqn 11

eqn 22
eqn 11,, eqn 22all points on line satisfy both

eqn 11

eqn 22

no points satisfy both

(i) (ii) (iii)

exists ,
unique ,

exists ,
unique)

exists)
llllunique

redundant information, inconsistent information
infinity of solutions no solution

Figure 25.6: Three possibilities for existence and uniqueness; row interpretation.

376

pp22

uu22 pp22

ff

uu11 pp11 pp11

ff −− uu11 pp11 pp22

Figure 25.7: Parallelogram construction for the case in case in which a unique solution exists.

We see that the condition for (both) existence and uniqueness is that the slopes of ‘eqn1’ and
‘eqn2’ must be different, or A11/A12 = A21/A22, or A11A22 − A12A21 = 0. We recognize the latter
as the more familiar condition det(A) = 0. In summary, if det(A) = 0 then our matrix A is non-
singular and the system Au = f has a unique solution; if det(A) = 0 then our matrix A is singular
and either our system has an infinity of solutions or no solution, depending on f . (In actual practice
the determinant condition is not particularly practical computationally, and serves primarily as a
convenient “by hand” check for very small systems.) We recall that a non-singular matrix A has
an inverse A−1 and hence in case (i) we can write u = A−1f ; we presented this equation earlier
under the assumption that A is non-singular — now we have provided the condition under which
this assumption is true.

25.2.3 The Column View

We next consider the column view, analogous to the column view of matrix multiplication. In
particular, we recall from the column view of matrix-vector multiplication that we can express Au
as ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

A11 A12 u1 A11 A12
Au = ⎝ ⎠⎝ ⎠ = ⎝ ⎠ u1 + ⎝ ⎠ u2

A21 A22 u2 A21 A22 ,

1 2p p

where p1 and p2 are the first and second column of A, respectively. Our system of equations can
thus be expressed as

1 2Au = f ⇔ p u1 + p u2 = f .

Thus the question of existence and uniqueness can be stated alternatively: is there a (unique?)
combination, u, of columns p1 and p2 which yields f?

We start by answering this question pictorially in terms of the familiar parallelogram construc­
tion of the sum of two vectors. To recall the parallelogram construction, we first consider in detail
the case shown in Figure 25.7. We see that in the instance depicted in Figure 25.7 there is clearly
a unique solution: we choose u1 such that f − u1p1 is parallel to p2 (there is clearly only one such

2 1value of u1); we then choose u2 such that u2p = f − u1p .
We can then identify, in terms of the parallelogram construction, three possibilities; these three

cases are shown in Figure 25.8. Here case (i) is the case already discussed in Figure 25.7: a unique
solution exists. In both cases (ii) and (iii) we note that

2 p = γp1 or p 2 − γp1 = 0 (p 1 and p 2 are linearly dependent)

for some γ, where γ is a scalar; in other words, p1 and p2 are colinear — point in the same direction
to within a sign (though p1 and p2 may of course be of different magnitude). We now discuss these
two cases in more detail.

377

6 6
6 6

6

︸ ︷︷ ︸ ︸ ︷︷ ︸

pp22

ff

pp11

pp22

ff

pp11

pp22

ff

pp11*

forfor ananyy vv11

ff −− vv11pp
11 ∦∦ toto pp22

(i) (ii) (iii)

exists , exists , exists)
unique , unique) uniquellll

(only p1 , or
2more p1 and some p , or . . .)

Figure 25.8: Three possibilities for existence and uniqueness; the column perspective.

1 2 1In case (ii), p and p are colinear but f also is colinear with p (and p2) — say f = βp1 for
some scalar β. We can thus write

f = p1 · β + p2 · 0 ⎛ ⎞⎛ ⎞
β

= ⎝p p ⎠⎝ ⎠1 2

0 ⎛ ⎞⎛ ⎞
A11 A12 β ⎝ ⎠⎝ ⎠=
A21 A22 0

∗ u

= Au∗ ,

∗and hence u is a solution. However, we also know that −γp1 + p2 = 0, and hence
1 20 = p · (−γ) + p · (1) ⎛ ⎞⎛ ⎞

−γ
= ⎝p p ⎠⎝ ⎠1 2

1 ⎛ ⎞⎛ ⎞
A11 A12 −γ ⎝ ⎠⎝ ⎠=
A21 A22 1 ⎛ ⎞
−γ ⎝ ⎠= A .
1

Thus, for any α, ⎛ ⎞
−γ

∗ ⎝ ⎠u = u + α
1

infinity of solutions

378

︸︷︷︸

︸ ︷︷ ︸

satisfies Au = f , since ⎛ ⎞ ⎛ ⎞⎛ ⎞	 ⎛ ⎞
−γ	 −γ⎜ ∗ ⎟ ⎜ ⎟

A ⎝u + α ⎝ ⎠⎠ = Au ∗ + A ⎝α ⎝ ⎠⎠
1 1

⎛ ⎞
−γ

= Au ∗ + αA ⎝ ⎠
1

= f + α · 0

= f .

This demonstrates that in case (ii) there are an infinity of solutions parametrized by the arbitrary
constant α.

Finally, we consider case (iii). In this case it is clear from our parallelogram construction that
1for no choice of v1 will f − v1p1 be parallel to p2, and hence for no choice of v2 can we form f − v1p

2as v2p . Put differently, a linear combination of two colinear vectors p1 and p2 can not combine to
2form a vector perpendicular to both p1 and p . Thus no solution exists.

Note that the vector (−γ 1)T is an eigenvector of A corresponding to a zero eigenvalue.3 By
definition the matrix A has no effect on an eigenvector associated with a zero eigenvalue, and it is
for this reason that if we have one solution to Au = f then we may add to this solution any multiple
— here α — of the zero-eigenvalue eigenvector to obtain yet another solution. More generally a
matrix A is non-singular if and only if it has no zero eigenvalues; in that case — case (i) — the
inverse exists and we may write u = A−1f . On the other hand, if A has any zero eigenvalues then
A is singular and the inverse does not exist; in that case Au = f may have either many solutions
or no solutions, depending on f . From our discussion of SPD systems we also note that A SPD is
a sufficient (but not necessary) condition for the existence of the inverse of A.

25.2.4 A Tale of Two Springs

We now interpret our results for existence and uniqueness for a mechanical system — our two
springs and masses — to understand the connection between the model and the mathematics. We
again consider our two masses and two springs, shown in Figure 25.9, governed by the system of
equations ⎛ ⎞

k1 + k2 −k2 ⎝ ⎠Au = f for A = K ≡ .
−k2 k2

We analyze three different scenarios for the spring constants and forces, denoted (I), (II), and (III),
which we will see correspond to cases (i), (ii), and (iii), respectively, as regards existence and
uniqueness. We present first (I), then (III), and then (II), as this order is more physically intuitive.

(I) In scenario (I)	 we choose k1 = k2 = 1 (more physically we would take k1 = k2 = k for
some value of k expressed in appropriate units — but our conclusions will be the same) and
f1 = f2 = 1 (more physically we would take f1 = f2 = f for some value of f expressed in
appropriate units — but our conclusions will be the same). In this case our matrix A and

3All scalar multiples of this eigenvector define what is known as the right nullspace of A.

379

wall

kk11

ff11

uu11

mm11

ff22

uu22

mm22

kk22 f =

⎛ ⎝
f1

f2

⎞ ⎠ , u =

⎛ ⎝
u1

u2

⎞ ⎠

given to find

Figure 25.9: System of equilibrium equations for two springs and two masses.

1 2	 1 2associated column vectors p and p take the form shown below. It is clear that p and p
are not colinear and hence a unique solution exists for any f . We are in case (i).

⎛ ⎞
2 −1

A = ⎝ ⎠
−1 1

p

p

2

2
=

=

−

−11

11

pp11 ==
22

−−11

anyany ff

case (i): exists ,, unique ,

(III) In scenario (III) we chose	 k1 = 0, k2 = 1 and f1 = f2 = 1. In this case our vector f and
matrix A and associated column vectors p1 and p2 take the form shown below. It is clear
that a linear combination of p1 and p2 can not possibly represent f — and hence no solution
exists. We are in case (iii). ⎛ ⎞

1 ⎝ ⎠f =
1

⎛ ⎞
1 −1

A = ⎝ ⎠

p

p

2

2

f

f

p

p

1

1

−1 1
case (iii): exists), llllunique

We can readily identify the cause of the difficulty. For our particular choice of spring constants
in scenario (III) the first mass is no longer connected to the wall (since k1 = 0); thus our
spring system now appears as in Figure 25.10. We see that there is a net force on our system
(of two masses) — the net force is f1 + f2 = 2 = 0 — and hence it is clearly inconsistent to
assume equilibrium.4 In even greater detail, we see that the equilibrium equations for each
mass are inconsistent (note fspr = k2(u2 − u1)) and hence we must replace the zeros on the
right-hand sides with mass × acceleration terms. At fault here is not the mathematics but
rather the model provided for the physical system.

4In contrast, in scenario (I), the wall provides the necessary reaction force in order to ensure equilibrium.

380

mm11 mm22

kk22

ff11 == 11 ff22 == 11

ffsprspr

11 ++ ffsprspr == 00 11−− ffspsprr == 00

ffsprspr

↑↑
mm11 ¨̈uu11 == 00 mm22 ¨̈uu22 == 00

(ass(assuummee sstrtreetctched)hed)

notnot pposossibsiblele

ffaultaultyy momodeldel
assassuummpptiontion

↑↑

Figure 25.10: Scenario III

(II) In this scenario we choose k1 = 0, k2 = 1 and f1 = 1, f2 = −1. In this case our vector f and
matrix A and associated column vectors p1 and p2 take the form shown below. It is clear
that a linear combination of p1 and p2 now can represent f — and in fact there are many
possible combinations. We are in case (ii). ⎛ ⎞

−1 ⎝ ⎠f =
1

⎛ ⎞
1 −1

A = ⎝ ⎠

pp22

ff

pp11

−1 1
case (ii): exists ,, unique)

We can explicitly construct the family of solutions from the general procedure described
earlier:

2 1p = = −1 p ,
γ ⎛ ⎞

= −1
f = −1 p1 ⇒ u ∗ = ⎝ ⎠

0 =
β

⇓

⎛ ⎞
−γ

∗ ⎝ ⎠u = u + α
1 ⎛ ⎞ ⎛ ⎞

−1 1 ⎝ ⎝ ⎠= ⎠ + α
0 1

381

︸︷︷︸
︸︷︷︸

mm11 mm22

ff22 == 11

ffsprspr ffsprspr

(ass(assuummee sstrtreetctched)hed)

kk22 == 11

−−11 ++ ffsprspr == 00 −−ffsprspr ++ 11 == 00
⇓⇓

ffsprspr == 11

11

kk22

((uu22 −− uu11)) ==
⇓⇓

aa ssololutionution

ff11 == −−11

11 onlonlyy didiffffererencencee inin
didisspplacelacememenntt mattersmatters

ffsprspr

Figure 25.11: Scenario II. (Note on the left mass the f1 arrow indicates the direction of the force
f1 = −1, not the direction of positive force.)

for any α. Let us check the result explicitly: ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
−1 α 1 −1 1 + α⎜ ⎟

A ⎝⎝ ⎠ + ⎝ ⎠⎠ = ⎝ ⎠⎝ ⎠
0 α −1 1 α

⎛ ⎞
(−1 + α) − α ⎝ ⎠=
(1 − α) + α ⎛ ⎞
−1 ⎝ ⎠=
1

= f ,

as desired. Note that the zero-eigenvalue eigenvector here is given by (−γ 1)T = (1 1)T

and corresponds to an equal (or translation) shift in both displacements, which we will now
interpret physically.
In particular, we can readily identify the cause of the non-uniqueness. For our choice of spring
constants in scenario (II) the first mass is no longer connected to the wall (since k1 = 0), just
as in scenario (III). Thus our spring system now appears as in Figure 25.11. But unlike in
scenario (III), in scenario (II) the net force on the system is zero — f1 and f2 point in opposite
directions — and hence an equilibrium is possible. Furthermore, we see that each mass is in
equilibrium for a spring force fspr = 1. Why then is there not a unique solution? Because
to obtain fspr = 1 we may choose any displacements u such that u2 − u1 = 1 (for k2 = 1):
the system is not anchored to wall — it just floats — and thus equilibrium is maintained
if we shift (or translate) both masses by the same displacement (our eigenvector) such that
the “stretch” remains invariant. This is illustrated in Figure 25.12, in which α is the shift
in displacement. Note α is not determined by the equilibrium model; α could be determined
from a dynamical model and in particular would depend on the initial conditions and the

382

a solution another solution

mm11 mm22

ff22 == 11

kk22 == 11

ff11 == −−11

mm11 mm22

ff22 == 11

kk22 == 11

ff11 == −−11

u = u ∗ =

⎛ ⎝
−1

0

⎞ ⎠ u = u ∗ + α

⎛ ⎝
1

1

⎞ ⎠

⎛ ⎞ ⎛ ⎞
−1⎜⎜⎝
0 α

Figure 25.12: Scenario (II): non-uniqueness.

damping in the system.

We close this section by noting that for scenario (I) k1 > 0 and k2 > 0 and hence A (≡ K) is
SPD: thus A−1 exists and Au = f has a unique solution for any forces f . In contrast, in scenarios
(II) and (III), k1 = 0, and hence A is no longer SPD, and we are no longer guaranteed that A−1

exists — and indeed it does not exist. We also note that in scenario (III) the zero-eigenvalue
eigenvector (1 1)T is precisely the v which yields zero energy, and indeed a shift (or translation)
of our unanchored spring system does not affect the energy in the spring.

25.3 A “Larger” Spring-Mass System: n Degrees of Freedom

We now consider the equilibrium of the system of n springs and masses shown in Figure 25.13.
(This string of springs and masses in fact is a model (or discretization) of a continuum truss; each
spring-mass is a small segment of the truss.) Note for n = 2 we recover the small system studied
in the preceding sections. This larger system will serve as a more “serious” model problem both as
regards existence and uniqueness but even more importantly as regard computational procedures.
We then consider force balance on mass 1,

forces on mass 1 = 0

⇒ f1 − k1u1 + k2(u2 − u1) = 0 ,

and then on mass 2,
forces on mass 2 = 0

⇒ f2 − k2(u2 − u1) + k3(u3 − u2) = 0 ,

and then on a typical interior mass i (hence 2 ≤ i ≤ n − 1)
forces on mass i = 0 (i = 1, i = n)

⇒ fi − ki(ui − ui−1) + ki+1(ui+1 − ui) = 0 ,

and finally on mass n,
forces on mass n = 0

⇒ fn − kn(un − un−1) = 0 .

α ⎜⎜⎝
⎟⎟⎠

⎟⎟⎠

383

6 6

︸︷︷︸ ︸ ︷︷ ︸

6 6

wall

kk11

ff11

uu11

mm11

ff22

uu22

mm22

kk22

ff33

uu33

mm33

kk33

ffnn

uunn

mmnn

kknn

…

free

Figure 25.13: System of n springs and masses.

We can write these equations as

(k1 + k2)u1 − k2u2 0 . . . = f1

− k2u1 + (k2 + k3)u2 − k3u3 0 . . . = f2

0 − k3u2 + (k3 + k4)u3 − k4u4 = f3

.

. . . 0 − knun−1 + knun = fn

or ⎞⎛⎞⎛⎞⎛
k1 + k2 −k2 u1 f1⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ −kn

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u2

u3

. . .

un−1

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

f2

f3

. . .

fn−1

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−k2 k2 + k3 −k3 0
−k3 k3 + k4 −k4

.

0
−kn kn un fn

K u f
n × n n × 1 n × 1

which is simply Au = f (A ≡ K) but now for n equations in n unknowns.
In fact, the matrix K has a number of special properties. In particular, K is sparse — K is

mostly zero entries since only “nearest neighbor” connections affect the spring displacement and
hence the force in the spring5; tri-diagonal — the nonzero entries are all on the main diagonal
and diagonal just below and just above the main diagonal; symmetric — KT = K; and positive

1definite (as proven earlier for the case n = 2) — (vTKv) is the potential/elastic energy of the 2
system. Some of these properties are important to establish existence and uniqueness, as discussed
in the next section; some of the properties are important in the efficient computational solution of
Ku = f , as discussed in the next chapters of this unit.

5This sparsity property, ubiquitous in MechE systems, will be the topic of its own chapter subsequently.

384

25.4 Existence and Uniqueness: General Case (Square Systems)

We now consider a general system of n equations in n unknowns,

A u = f
given to find given

where A is n × n, u is n × 1, and f is n × 1.
If A has n independent columns then A is non-singular, A−1 exists, and Au = f has a unique

solution u. There are in fact many ways to confirm that A is non-singular: A has n independent
columns; A has n independent rows; A has nonzero determinant; A has no zero eigenvalues; A is
SPD. (We will later encounter another condition related to Gaussian elimination.) Note all these
conditions are necessary and sufficient except the last: A is SPD is only a sufficient condition
for non-singular A. Conversely, if any of the necessary conditions is not true then A is singular
and Au = f either will have many solutions or no solution, depending of f . 6 In short, all of our
conclusions for n = 2 directly extend to the case of general n.

6Note in the computational context we must also understand and accommodate “nearly” singular systems. We
do not discuss this more advanced topic further here.

385

︸︷︷︸ ︸︷︷︸ ︸︷︷︸

386

Chapter 26

Gaussian Elimination and Back
Substitution

DRAFT V1.2 © The Authors. License: Creative Commons BY-NC-SA 3.0 .

26.1 A 2 × 2 System (n = 2)

Let us revisit the two-mass mass-spring system (n = 2) considered in the previous chapter; the
system is reproduced in Figure 26.1 for convenience. For simplicity, we set both spring constants
to unity, i.e. k1 = k2 = 1. Then, the equilibrium displacement of mass m1 and m2, u1 and u2, is
described by a linear system ⎛ ⎞⎛ ⎞ ⎛ ⎞

2 −1 u1 f1
A u = f → ⎝ ⎠⎝ ⎠ = ⎝ ⎠ , (26.1)
(K) −1 1 u2 f2

where f1 and f2 are the forces applied to m1 and m2. We will use this 2 × 2 system to describe
a systematic two-step procedure for solving a linear system: a linear solution strategy based on
Gaussian elimination and back substitution. While the description of the solution strategy may
appear overly detailed, we focus on presenting a systematic approach such that the approach
generalizes to n × n systems and can be carried out by a computer.

By row-wise interpretation of the linear system, we arrive at a system of linear equations

2 u1 − u2 = f1
pivot

−1u1 + u2 = f2.

wall

kk11

ff11

uu11

mm11

ff22

uu22

mm22

kk22

k1 = k2 = “1”

Figure 26.1: n = 2 spring-mass system.

387

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

We recognize that we can eliminate u1 from the second equation by adding 1/2 of the first equation
to the second equation. The scaling factor required to eliminate the first coefficient from the second
equation is simply deduced by diving the first coefficient of the second equation (−1) by the “pivot”
— the leading coefficient of the first equation (2) — and negating the sign; this systematic procedure
yields (−(−1)/2) = 1/2 in this case. Addition of 1/2 of the first equation to the second equation
yields a new second equation

1 u1 − 1 u2 = 2 2 f1

−u1 + u2 = f2 .
1 10u1 + 2 u2 = f1 + f22

Note that the solution to the linear system is unaffected by this addition procedure as we are simply
adding “0” — expressed in a rather complex form — to the second equation. (More precisely, we
are adding the same value to both sides of the equation.)

Collecting the new second equation with the original first equation, we can rewrite our system
of linear equations as

2u1 − u2 = f1

1 1
0u1 + u2 = f2 + f1

2 2

or, in the matrix form, ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
2 −1 u1 f1 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠= .

1 10 u2 2 f12 f2 +

U u f̂

Here, we have identified the new matrix, which is upper triangular, by U and the modified right-
hand side by f̂ . In general, an upper triangular matrix has all zeros below the main diagonal,
as shown in Figure 26.2; the zero entries of the matrix are shaded in blue and (possibly) nonzero
entries are shaded in red. For the 2 × 2 case, upper triangular simply means that the (2, 1) entry
is zero. Using the newly introduced matrix U and vector f̂ , we can concisely write our 2 × 2 linear
system as

ˆUu = f. (26.2)

The key difference between the original system Eq. (26.1) and the new system Eq. (26.2) is that
the new system is upper triangular; this leads to great simplification in the solution procedure as
we now demonstrate.

First, note that we can find u2 from the second equation in a straightforward manner, as the
equation only contains one unknown. A simple manipulation yields

eqn 2 1 1
2 u2 = f2 + 2 f1 ⇒ u2 = f1 + 2f2of U

Having obtained the value of u2, we can now treat the variable as a “known” (rather than “un­
known”) from hereon. In particular, the first equation now contains only one “unknown”, u1; again,

388

︷︷ ︷︷ ︷︷ ︸

⎞⎛ above main diagonal:

below main diagonal:
zero

possibly nonzero

0
U =

x

x

x

x

x

x

x

x

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

main diagonal:
possibly nonzero

Figure 26.2: Illustration of an upper triangular matrix.

it is trivial to solve for the single unknown of a single equation, i.e.

eqn 1
2u1 − u2 = f1of U

⇒	 2u1 = f1 + u2
(already know)

⇒ 2u1 = f1 + f1 + 2f2 = 2(f1 + f2)

⇒ u1 = (f1 + f2) .

Note that, even though the 2×2 linear system Eq. (26.2) is still a fully coupled system, the solution
procedure for the upper triangular system is greatly simplified because we can sequentially solve
(two) single-variable-single-unknown equations.

In above, we have solved a simple 2 × 2 system using a systematic two-step approach. In the
first step, we reduced the original linear system into an upper triangular system; this step is called
Gaussian elimination (GE). In the second step, we solved the upper triangular system sequentially
starting from the equation described by the last row; this step is called back substitution (BS).
Schematically, our linear system solution strategy is summarized by ⎧⎨ ⎩

GE: Au = f ⇒ Uu = f̂ step 1

BS: Uu = f̂ ⇒ u step 2.

This systematic approach to solving a linear system in fact generalize to general n × n systems,
as we will see shortly. Before presenting the general procedure, let us provide another concrete
example using a 3 × 3 system.

26.2 A 3 × 3 System (n = 3)

Figure 26.3 shows a three-mass spring-mass system (n = 3). Again assuming unity-stiffness springs

389

k1 = k2 = k3 = 1

wall

kk11

ff11

uu11

mm11

ff22

uu22

mm22

kk22

ff33

uu33

mm33

kk33

Figure 26.3: A n = 3 spring-mass system.

for simplicity, we obtain a linear system describing the equilibrium displacement: ⎞⎛⎞⎛⎞⎛
2 −1 0

A u = f
(K)

→
⎜⎜⎜⎜⎝

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠

u1

u2

⎟⎟⎟⎟⎠
=

⎜⎜⎜⎜⎝

f1

f2

⎟⎟⎟⎟⎠
. −1 2 −1

0 −1 1 u3 f3

As described in the previous chapter, the linear system admits a unique solution for a given f .
Let us now carry out Gaussian elimination to transform the system into an upper triangular

system. As before, in the first step, we identify the first entry of the first row (2 in this case) as
the “pivot”; we will refer to this equation containing the pivot for the current elimination step as
the “pivot equation.” We then add (−(−1/2)) of the “pivot equation” to the second equation, i.e.

12 −1 0 f1 eqn 1 2pivot

−1 2 −1 f2 + 1 eqn 2 ,

0 −1 1 f3

where the system before the reduction is shown on the left, and the operation to be applied is shown
on the right. The operation eliminates the first coefficient (i.e. the first-column entry, or simply
“column 1”) of eqn 2, and reduces eqn 2 to

3 1
0u1 + u2 − u3 = f2 + f1 .

2 2

Since column 1 of eqn 3 is already zero, we need not add the pivot equation to eqn 3. (Systematically,
we may interpret this as adding (−(0/2)) of the pivot equation to eqn 3.) At this point, we have
completed the elimination of the column 1 of eqn 2 through eqn 3 (= n) by adding to each
appropriately scaled pivot equations. We will refer to this partially reduced system, as “U -to-be”;
in particular, we will denote the system that has been reduced up to (and including) the k-th pivot
by Ũ(k). Because we have so far processed the first pivot, we have Ũ(k = 1), i.e. ⎞⎛

2 −1 0

Ũ(k = 1) =
⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
. 30 −12

0 −1 1

In the second elimination step, we identify the modified second equation (eqn 2 ') as the “pivot
' equation” and proceed with the elimination of column 2 of eqn 3 ' through eqn n . (In this case, we

390

modify only eqn 3 ' since there are only three equations.) Here the prime refers to the equations in
Ũ(k = 1). Using column 2 of the pivot equation as the pivot, we add (−(−1/(3/2))) of the pivot
equation to eqn 3 ' , i.e.

2 −1 0 f1

3 1 20 −1 f2 + f1 eqn 2 ' ,2 2 3
pivot

0 −1 1 f3 1 eqn 3 '

where, again, the system before the reduction is shown on the left, and the operation to be applied
is shown on the right. The operation yields a new system,

2 −1 0 f1

0 3 −1 f2 + 1 f1 ,2 2

1 2 10 0 f3 + f2 + f13 3 3

or, equivalently in the matrix form ⎞⎛⎞⎛⎞⎛
2 −1 0 ⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠

u1

u2

⎟⎟⎟⎟⎠
=

⎜⎜⎜⎜⎝

f1

f2 + 1
2 f1

⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎝
30 −1 2

1 2 10 0 u3 f3 + f2 + f13 3 3

ˆU u = f,

which is an upper triangular system. Note that this second step of Gaussian elimination — which
adds an appropriately scaled eqn 2 ' to eliminate column 3 of all the equations below it — can be
reinterpreted as performing the first step of Gaussian elimination to the (n − 1) × (n − 1) lower
sub-block of the matrix (which is 2 × 2 in this case). This interpretation enables extension of the
Gaussian elimination procedure to general n × n matrices, as we will see shortly.

Having constructed an upper triangular system, we can find the solution using the back sub­
stitution procedure. First, solving for the last variable using the last equation (i.e. solving for u3
using eqn 3),

eqn n(= 3) 1 2 1 u3 = f3 + f2 + f1 ⇒ u3 = 3f3 + 2f2 + f1.3 3 3of U

Now treating u3 as a “known”, we solve for u2 using the second to last equation (i.e. eqn 2),

eqn 2 3 1
of U 2 u2 − u3 = f2 + 2 f1

known;
(move to r.h.s.)

3 1
2 u2 = f2 + 2 f1 + u3 ⇒ u2 = 2f2 + f1 + 2f3.

Finally, treating u3 and u2 as “knowns”, we solve for u1 using eqn 1,

eqn 1
2u1 − u2 + 0 · u3 = f1of U known; known;

(move to r.h.s.) (move to r.h.s.)

2u1 = f1 + u2 (+ 0 · u3) ⇒ u1 = f1 + f2 + f3.

Again, we have taken advantage of the upper triangular structure of the linear system to sequentially
solve for unknowns starting from the last equation.

391

(a) original system A = Ũ(k = 0) (b) processing pivot 1 (c) beginning of step 2, Ũ(k = 1)

(d) processing pivot 2 (e) beginning of step 3, Ũ(k = 2) (f) final matrix U = Ũ(k = n)

Figure 26.4: Illustration of Gaussian elimination applied to a 6 × 6 system. See the main text for
a description of the colors.

26.3 General n × n Systems

Now let us consider a general n×n linear system. We will again use a systematic, two-step approach:
Gaussian elimination and back substitution:

step 1: A u = f → U u = f̂ (GE)
n×n n×1 n×1 n×n n×1 n×1

.

step 2: Uu = f̂ ⇒ u (BS)

This time, we will pay particular attention to the operation count required for each step. In
addition, we will use the graphical representation shown in Figure 26.4 to facilitate the discussion.
In the figure, the blue represents (in general) a nonzero entry, the white represents a zero entry, the
red square represents the pivot, the orange squares identify the working rows, the shaded regions
represents the rows or columns of pivots already processed, and the unshaded regions represents
the rows and columns of pivots not yet processed.

As before, the first step of Gaussian elimination identifies the first equation (eqn 1) as the pivot
equation and eliminates the first coefficient (column 1) of the eqn 2 through eqn n. To each such
row, we add the appropriately scaled (determined by the ratio of the first coefficient of the row
and the pivot) pivot row. We must scale (i.e. multiply) and add n coefficients, so the elimination
of the first coefficient requires 2n operations per row. Since there are n − 1 rows to work on, the

392

2 total operation count for the elimination of column 1 of eqn 2 through eqn n is 2n(n − 1) ≈ 2n .
Figure 26.4(b) illustrates the elimination process working on the fourth row. Figure 26.4(c) shows
the partially processed matrix with zeros in the first column: U -to-be after the first step, i.e.
Ũ(k = 1).

In the second step, we identify the second equation as the pivot equation. The elimination
of column 2 of eqn 3 through eqn n requires addition of an (n − 1)-vector — an appropriately

˜scaled version of the pivot row of U(k = 1) — from the given row. Since there are n − 2 rows
to work on, the total operation count for the elimination of column 2 of eqn 3 through eqn n is
2(n−1)(n−2) ≈ 2(n−1)2 . Note that the work required for the elimination of the second coefficient
in this second step is lower than the work required for the elimination of the first coefficient in the
first step because 1) we do not alter the first row (i.e. there is one less row from which to eliminate
the coefficient) and 2) the first coefficient of all working rows have already been set to zero. In other
word, we are working on the lower (n −1) × (n− 1) sub-block of the original matrix, eliminating the
first coefficient of the sub-block. This sub-block interpretation of the elimination process is clear
from Figures 26.4(c) and 26.4(d); because the first pivot has already been processed, we only need
to work on the unshaded area of the matrix.

In general, on the kth step of Gaussian elimination, we use the kthrow to remove the kth

coefficient of eqn k + 1 through eqn n, working on the (n − k + 1) × (n − k + 1) sub-block. Thus,
ththe operation count for the step is 2(n − k + 1). Summing the work required for the first to the n

step, the total operation count for Gaussian elimination is

n

2n 2 + 2(n − 1)2 + · · · + 2 · 32 + 2 · 22 ≈ 2k2 ≈
2
n 3 FLOPs .

3
k=1

Note that the cost of Gaussian elimination grows quite rapidly with the size of the problem: as the
˜third power of n. The upper-triangular final matrix, U = U(k = n), is shown in Figure 26.4(f).

During the Gaussian elimination process, we must also construct the modified right-hand side
f̂ . In eliminating the first coefficient, we modify the right-hand side of eqn 2 through eqn n (n − 1
equations), each requiring two operations for multiplication and addition, resulting in 2(n−1) ≈ 2n
total operations. In general, the kth step of Gaussian elimination requires modification of the
(n − k)-sub-vector on the right-hand side. Thus, the total operation count for the construction of
the right-hand side is

n

2n + 2(n − 1) + · · · + 2 · 3 + 2 · 2 ≈ 2k ≈ n 2 FLOPs .
k=1

As the cost for constructing the modified right-hand side scales as n2 , it becomes insignificant
compared to 2n3/3 operations required for the matrix manipulation for a large n. Thus, we conclude
that the total cost of Gaussian elimination, including the construction of the modified right-hand
side, is 2n3/3.

Now let us consider the operation count of back substitution. Recall that the n × n upper

393

∑

∑

triangular system takes the form ⎞ ⎛
f̂1

⎞⎛⎞⎛
U11 U12 · · · · · · U1n u1

f̂2U22 U2n u2

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

.

Un−1 n−1 Un−1 n

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. . .

un−1

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

f̂
n−1

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Unn un f̂
n

We proceed to solve for the unknowns u1, . . . , un starting from the last unknown un using the nth

equation and sequentially solving for un−1, . . . , u1 in that order. Schematically, the solution process
takes the form

eqn n : Un nun − f̂
n ⇒ un =

f̂
n

Un n

eqn n − 1: Un−1 n−1un−1 + Un−1 nun = f̂
n−1

⇓

Un−1 n−1un−1 = f̂
n−1 − Un−1 n−1un−1 ⇒ un−1

. . .

eqn 1: U11u1 + U12u2 + · · · + U1 nun = f̂1

⇓

U11u1 = f̂1 − U12u2 − · · · − U1 nun ⇒ u1 .

Solving for un requires one operation. Solving for un−1 requires one multiplication-subtraction
pair (two operations) and one division. In general, solving for uk requires (n − k) multiplication-
subtraction pairs (2(n − k) operations) and one division. Summing all the operations, the total
operation count for back substitution is

N

1 + (1 + 2) + (1 + 2 · 2) + · · · + (1 + 2(n − 1)) ≈ 2k ≈ n 2 FLOPs .
k=1

Note that the cost for the back substitution step scales as the second power of the problem size
n; thus, the cost of back substitution becomes negligible compared to that of Gaussian elimination
for a large n.

26.4 Gaussian Elimination and LU Factorization

In this chapter, we introduced a systematic procedure for solving a linear system using Gaussian
elimination and back substitution. We interpreted Gaussian elimination as a process of triangu­
lating the system matrix of interest; the process relied, in the kth step, on adding appropriately
scaled versions of the kth equation to all the equations below it in order to eliminate the leading

394

∑

coefficient. In particular, we also modified the right-hand side of the equation in the triangulation
procedure such that we are adding the same quantity to both sides of the equation and hence not
affecting the solution. The end product of our triangulation process is an upper triangular matrix
U and a modified right-hand side f̂ . If we are given a new right-hand side, we would have to repeat
the same procedure again (in O(n3) cost) to deduce the appropriate new modified right-hand side.

It turns out that a slight modification of our Gaussian elimination procedure in fact would
permit solution to the problem with a different right-hand side in O(n2) operations. To achieve
this, instead of modifying the right-hand side in the upper triangulation process, we record the
operations used in the upper triangulation process with which we generated the right-hand side. It
turns out that this recording operation in fact can be done using a lower triangular matrix L, such
that the modified right-hand side f̂ is the solution to

Lf̂ = f, (26.3)

where f is the original right-hand side. Similar to back substitution for an upper triangular system,
forward substitution enables solution to the lower triangular system in O(n2) operations. This lower
triangular matrix L that records all operations used in transforming matrix A into U in fact is a
matrix that satisfies

A = LU .

In other words, the matrices L and U arise from a factorization of the matrix A into lower and
upper triangular matrices.

This procedure is called LU factorization. (The fact that L and U must permit such a factor­
ization is straightforward to see from the fact that Uu = f̂ and Lf̂ = f ; multiplication of both
sides of Uu = f̂ by L yields LUu = Lf̂ = f , and because the relationship must hold for any
solution-right-hand-side pair {u, f} to Au = f , it must be that LU = A.) The factorization process
is in fact identical to our Gaussian elimination and requires 2n3/3 operations. Note we did compute
all the pieces of the matrix L in our elimination procedure; we simply did not form the matrix for
simplicity.

In general the LU decomposition will exist if the matrix A is non-singular. There is, however,
one twist: we may need to permute the rows of A — a process known as (partial) pivoting — in
order to avoid a zero pivot which would prematurely terminate the process. (In fact, permutations
of rows can also be advantageous to avoid small pivots which can lead to amplification of round-off
errors.) If even — say in infinite precision — with row permutations we arrive at an exactly zero
pivot then this is in fact demonstrates that A is singular.1

There are some matrices for which no pivoting is required. One such important example in
mechanical engineering is SPD matrices. For an SPD matrix (which is certainly non-singular — all
eigenvalues are positive) we will never arrive at a zero pivot nor we will need to permute rows to
ensure stability. Note, however, that we may still wish to permute rows to improve the efficiency
of the LU decomposition for sparse systems — which is the topic of the next section.

26.5 Tridiagonal Systems

While the cost of Gaussian elimination scales as n3 for a general n × n linear system, there are
instances in which the scaling is much weaker and hence the computational cost for a large problem

1The latter is a more practical test for singularity of A than say the determinant of A or the eigenvalues of A,
however typically singularity of “mechanical engineering” A matrices are not due to devious cancellations but rather
due to upfront modeling errors — which are best noted and corrected prior to LU decomposition.

395

is relatively low. A tridiagonal system is one such example. A tridigonal system is characterized by
having nonzero entries only along the main diagonal and the immediate upper and lower diagonal,
i.e. ⎞⎛

A =

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x

x x x

x x x

x x x

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

main + 1 diagonal

x x x

x x x

x x x

x x

main − 1 diagonal main diagonal
.

The immediate upper diagonal is called the super-diagonal and the immediate lower diagonal is
called the sub-diagonal. A significant reduction in the computational cost is achieved by taking
advantage of the sparsity of the tridiagonal matrix. That is, we omit addition and multiplication
of a large number of zeros present in the matrix.

Let us apply Gaussian elimination to the n×n tridiagonal matrix. In the first step, we compute
the scaling factor (one FLOP), scale the second entry of the coefficient of the first row by the scaling
factor (one FLOP), and add that to the second coefficient of the second row (one FLOP). (Note
that we do not need to scale and add the first coefficient of the first equation to that of the second
equation because we know it will vanish by construction.) We do not have to add the first equation
to any other equations because the first coefficient of all other equations are zero. Moreover, note
that the addition of the (scaled) first row to the second row does not introduce any new nonzero
entry in the second row. Thus, the updated matrix has zeros above the super-diagonal and retains
the tridiagonal structure of the original matrix (with the (2,1) entry eliminated, of course); in
particular, the updated (n − 1) × (n − 1) sub-block is again tridiagonal. We also modify the right-
hand side by multiplying the first entry by the scaling factor (one FLOP) and adding it to the
second entry (one FLOP). Combined with the three FLOPs required for the matrix manipulation,
the total cost for the first step is five FLOPs.

Similarly, in the second step, we use the second equation to eliminate the leading nonzero coef­
ficient of the third equation. Because the structure of the problem is identical to the first one, this
also requires five FLOPs. The updated matrix retain the tridiagonal structure in this elimination
step and, in particular, the updated (n − 2) × (n − 2) sub-block is tridiagonal. Repeating the
operation for n steps, the total cost for producing an upper triangular system (and the associated
modified right-hand side) is 5n FLOPs. Note that the cost of Gaussian elimination for a tridiag­
onal system scales linearly with the problem size n: a dramatic improvement compared to O(n3)
operations required for a general case.

396

At this point, we have produced an upper triangular system of the form ⎞⎛⎞⎛⎞⎛
x x u1 f̂1

3 FLOPs
x x 0 u2 f̂1

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x

x x

x x

0 x x

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. . .
un−2

3 FLOPs

un−1
3 FLOPs

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
f̂
n−2

f̂
n−1

f̂
n

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

x x
un

x 1 FLOP

The system is said to be bidiagonal — or more precisely upper bidiagonal — as nonzero entries
appear only on the main diagonal and the super-diagonal. (A matrix that has nonzero entries
only on the main and sub-diagonal are also said to be bidiagonal; in this case, it would be lower
bidiagonal.)

In the back substitution stage, we can again take advantage of the sparsity — in particular
the bidiagonal structure — of our upper triangular system. As before, evaluation of un requires a
simple division (one FLOP). The evaluation of un−1 requires one scaled subtraction of un from the
right-hand side (two FLOPs) and one division (one FLOP) for three total FLOPs. The structure
is the same for the remaining n − 2 unknowns; the evaluating each entry takes three FLOPs. Thus,
the total cost of back substitution for a bidiagonal matrix is 3n FLOPs. Combined with the cost
of the Gaussian elimination for the tridiagonal matrix, the overall cost for solving a tridiagonal
system is 8n FLOPs. Thus, the operation count of the entire linear solution procedure (Gaussian
elimination and back substitution) scales linearly with the problem size for tridiagonal matrices.

We have achieved a significant reduction in computational cost for a tridiagonal system com­
pared to a general case by taking advantage of the sparsity structure. In particular, the com­
putational cost has been reduced from 2n3/3 to 8n. For example, if we wish to solve for the
equilibrium displacement of a n = 1000 spring-mass system (which yields a tridiagonal system),
we have reduced the number of operations from an order of a billion to a thousand. In fact, with
the tridiagonal-matrix algorithm that takes advantage of the sparsity pattern, we can easily solve
a spring-mass system with millions of unknowns on a desktop machine; this would certainly not be
the case if the general Gaussian elimination algorithm is employed, which would require O(1018)
operations.

While many problems in engineering require solution of a linear system with millions (or even
billions) of unknowns, these systems are typically sparse. (While these systems are rarely tridiag­
onal, most of the entries of these matrices are zero nevertheless.) In the next chapter, we consider
solution to more general sparse linear systems; just as we observed in this tridiagonal case, the key
to reducing the computational cost for large sparse matrices — and hence making the computation
tractable — is to study the nonzero pattern of the sparse matrix and design an algorithm that does
not execute unnecessary operations.

397

398

Chapter 27

Gaussian Elimination: Sparse
Matrices

In the previous chapter, we observed that the number of floating point operations required to
solve a n × n tridiagonal system scales as O(n) whereas that for a general (dense) n × n system
scales as O(n3). We achieved this significant reduction in operation count by taking advantage of
the sparsity of the matrix. In this chapter, we will consider solution of more general sparse linear
systems.

27.1 Banded Matrices

A class of sparse matrices that often arise in engineering practice — especially in continuum me­
chanics — is the banded matrix. An example of banded matrix is shown in Figure 27.1. As the
figure shows, the nonzero entries of a banded matrix is confined to within mb entries of the main
diagonal. More precisely,

Aij = 0, for j > i + mb or j < i − mb,

and A may take on any value within the band (including zero). The variable mb is referred to as
the bandwidth. Note that the number of nonzero entries in a n×n banded matrix with a bandwidth
mb is less than n(2mb + 1).

Let us consider a few different types of banded matrices.

⎛ mb ⎞ ⎜⎜⎜⎜⎜⎜⎜⎜⎝

mb 0 ⎟⎟⎟⎟⎟⎟⎟⎟⎠

A u = f , A =
n×n n×1 n×1

0

Figure 27.1: A banded matrix with bandwidth mb.

399

DRAFT V1.2 © The Authors. License: Creative Commons BY-NC-SA 3.0 .

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

kk == 11

wall

uu33

mm

uu44

mm

uunn

mmnn

uu22

mm22

kk == 11 kk == 11 kk == 11 kk == 11 kk == 11 kk == 11

uu11

mm11

ff11 == 11 ff22 == 11 ff33 == 11 ff44 == 11 ffnn == 11

kk == 11

kk == 11

kk == 11

kk == 11 kk == 11

Figure 27.2: A spring-mass system whose equilibrium state calculation gives rise to a pentadiagonal
matrix.

Example 27.1.1 Tridiagonal matrix: mb = 1
As we have discussed in the previous two chapters, tridiagonal matrices have nonzero entries only
along the main diagonal, sub-diagonal, and super-diagonal. Pictorially, a tridiagonal matrix takes
the following form:

main diagonal, main ±1 diagonals

Clearly the bandwidth of a tridiagonal matrix is mb = 1. A n × n tridiagonal matrix arise from,
for example, computing the equilibrium displacement of n masses connected by springs, as we have
seen in previous chapters.

·

Example 27.1.2 Pentadiagonal matrix: mb = 2
As the name suggests, a pentadiagonal matrix is characterized by having nonzero entries along the
main diagonal and the two diagonals above and below it, for the total of five diagonals. Pictorially,
a pentadigonal matrix takes the following form:

main diagonal, main ±1, ±2 diagonals

The bandwidth of a pentadiagonal matrix is mb = 2. A n × n pentadiagonal matrix arise from,
for example, computing the equilibrium displacement of n masses each of which is connected to
not only the immediate neighbor but also to the neighbor of the neighbors. An example of such a
system is shown in Figure 27.2.

·

Example 27.1.3 “Outrigger” matrix
Another important type of banded matrix is a matrix whose zero entries are confined to within the
mb band of the main diagonal but for which a large number of entries between the main diagonal
and the most outer band is zero. We will refer to such a matrix as “outrigger.” An example of
such a matrix is

0

0
.

0

0
.

⎛ ⎜⎜⎜⎝
0

0

0

0

mb

.“outrigger”

400

� �

In this example, there are five nonzero diagonal bands, but the two outer bands are located far
from the middle three bands. The bandwidth of the matrix, mb, is specified by the location of
the outer diagonals. (Note that this is not a pentadiagonal matrix since the nonzero entries are
not confined to within mb = 2.) “Outrigger” matrices often arise from finite difference (or finite
element) discretization of partial differential equations in two or higher dimensions.

·

27.2 Matrix-Vector Multiplications

To introduce the concept of sparse operations, let us first consider multiplication of a n × n sparse
matrix with a (dense) n-vector. Recall that matrix-vector multiplication may be interpreted row-
wise or column-wise. In row-wise interpretation, we consider the task of computing w = Av as
performing n inner products, one for each entry of w, i.e. ⎞ ⎛

wi = Ai1 Ai2 . . . Ain

⎜⎜⎜⎜⎝

v1
v2
. . .
vn

⎟⎟⎟⎟⎠
, i = 1, . . . , n.

If the matrix A is dense, the n inner products of n-vectors requires n ·(2n) = 2n2 FLOPs. However,
if the matrix A is sparse, then each row of A contains few nonzero entries; thus, we may skip a large
number of trivial multiplications in our inner products. In particular, the operation count for the
inner product of a sparse n-vector with a dense n-vector is equal to twice the number of nonzero
entries in the sparse vector. Thus, the operation count for the entire matrix-vector multiplication
is equal to twice the number of nonzero entries in the matrix, i.e. 2 · nnz(A), where nnz(A) is the
number of nonzero entries in A. This agrees with our intuition because the matrix-vector product
requires simply visiting each nonzero entry of A, identifying the appropriate multiplier in v based
on the column index, and adding the product to the appropriate entry of w based on the row index.

Now let us consider a column interpretation of matrix-vector multiplication. In this case, we
interpret w = Av as ⎞⎛⎞⎛⎞⎛⎞⎛

A11 A12 A1nw1⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
= v1

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
+ v2

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
+ · · · + vn

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
.

A21
. . .

A22
. . .

A2n
. . .

w2
. . .
wn An1 An2 Ann

If A is sparse then, each column of A contains few nonzero entries. Thus, for each column we simply
need to scale these few nonzero entries by the appropriate entry of v and augment the corresponding
entries of w; the operation count is twice the number of nonzero entries in the column. Repeating
the operation for all columns of A, the operation count for the entire matrix-vector multiplication
is again 2 · nnz(A).

Because the number of nonzero entries in a sparse matrix is (by definition) O(n), the operation
count for sparse matrix-vector product is 2 · nnz(A) ∼ O(n). For example, for a banded matrix
with a bandwidth mb, the operation count is at most 2n(2mb + 1). Thus, we achieve a significant
reduction in the operation count compared to dense matrix-vector multiplication, which requires
2n2 operations.

401

()

27.3 Gaussian Elimination and Back Substitution

27.3.1 Gaussian Elimination

We now consider the operation count associated with solving a sparse linear system Au = f using
Gaussian elimination and back substitution introduced in the previous chapter. Recall that the
Gaussian elimination is a process of turning a linear system into an upper triangular system, i.e.

step 1: Au = f → U u = f̂ .
(n×n)
upper

triangular

For a n × n dense matrix, Gaussian elimination requires approximately 2 n3 FLOPs.3

Densely-Populated Banded Systems

Now, let us consider a n × n banded matrix with a bandwidth mb. To analyze the worst case, we
assume that all entries within the band are nonzero. In the first step of Gaussian elimination, we
identify the first row as the “pivot row” and eliminate the first entry (column 1) of the first mb
rows by adding appropriately scaled pivot row; column 1 of rows mb + 2, . . . , n are already zero.
Elimination of column 1 of a given row requires addition of scaled mb + 1 entries of the pivot row,
which requires 2(mb + 1) operations. Applying the operation to mb rows, the operation count for
the first step is approximately 2(mb + 1)2 . Note that because the nonzero entries of the pivot row
is confined to the first mb + 1 entries, addition of the scaled pivot row to the first mb + 1 rows does
not increase the bandwidth of the system (since these rows already have nonzero entries in these
columns). In particular, the sparsity pattern of the upper part of A is unaltered in the process.

The second step of Gaussian elimination may be interpreted as applying the first step of Gaus­
sian elimination to (n − 1) × (n − 1) submatrix, which itself is a banded matrix with a bandwidth
mb (as the first step does not alter the bandwidth of the matrix). Thus, the second elimination
step also requires approximately 2(mb +1)2 FLOPs. Repeating the operation for all n pivots of the
matrix, the total operation count for Gaussian elimination is approximately 2n(mb + 1)2 ∼ O(n).
The final upper triangular matrix U takes the following form:

mb⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎠0

0
.

The upper triangular matrix has approximately n(mb + 1) ∼ O(n) nonzero entries. Both the
operation count and the number of nonzero in the final upper triangular matrix are O(n), compared
to O(n3) operations and O(n2) entries for a dense system. (We assume here mb is fixed independent
of n.)

In particular, as discussed in the previous chapter, Gaussian elimination of a tridiagonal matrix
yields an upper bidiagonal matrix ⎞⎛

0

0 ⎠⎝ U =
,

main, main +1 diagonals

402

in approximately 5n operations (including the formation of the modified right-hand side f̂). Simi­
larly, Gaussian elimination of a pentadiagonal system results in an upper triangular matrix of the
form ⎛ ⎞

0

0 ⎠⎝U = ,

main, main +1, +2 diagonals

and requires approximately 14n operations.

“Outrigger” Systems: Fill-Ins

Now let us consider application of Gaussian elimination to an “outrigger” system. First, because a
n × n “outrigger” system with a bandwidth mb is a special case of a “densely-populated banded”
system with a bandwidth mb considered above, we know that the operation count for Gaussian
elimination is at most n(mb + 1)2 and the number of nonzero in the upper triangular matrix is at
most n(mb + 1). In addition, due to a large number of zero entries between the outer bands of the
matrix, we hope that the operation count and the number of nonzero are less than those for the
“densely-populated banded” case. Unfortunately, inspection of the Gaussian elimination procedure
reveals that this reduction in the cost and storage is not achieved in general.

The inability to reduce the operation count is due to the introduction of “fill-ins”: the entries of
the sparse matrix that are originally zero but becomes nonzero in the Gaussian elimination process.
The introduction of fill-ins is best described graphically. Figure 27.3 shows a sequence of matrices
generated through Gaussian elimination of a 25 × 25 outrigger system. In the subsequent figures,
we color code entries of partially processed U : the shaded area represents rows or columns of pivots
already processed; the unshaded area represents the rows and columns of pivots not yet processed;
the blue represent initial nonzeros in A which remain nonzeros in U -to-be; and the red are initial
zeros of A which become nonzero in U -to-be, i.e. fill-ins.

As Figure 27.3(a) shows, the bandwidth of the original matrix is mb = 5. (The values of the
entries are hidden in the figure as they are not important in this discussion of fill-ins.) In the first
elimination step, we first eliminate column 1 of row 2 by adding an appropriately scaled row 1 to
the row. While we succeed in eliminating column 1 of row 2, note that we introduce a nonzero
element in column 6 of row 2 as column 6 of row 1 “falls” to row 2 in the elimination process. This
nonzero element is called a “fill-in.” Similarly, in eliminating column 1 of row 6, we introduce a
“fill-in” in column 2 as column 2 of row 1 “falls” to row 6 in the elimination process. Thus, we have
introduced two fill-ins in this first elimination step as shown in Figure 27.3(b): one in the upper
part and another in the lower part.

Now, consider the second step of elimination starting from Figure 27.3(b). We first eliminate
column 2 of row 3 by adding appropriately scaled row 2 to row 3. This time, we introduce fill in
not only from column 7 of row 2 “falling” to row 3, but also from column 6 of row 2 “falling” to
row 3. Note that the latter is in fact a fill-in introduced in the first step. In general, once a fill-in
is introduced in the upper part, the fill-in propagates from one step to the next, introducing further
fill-ins as it “falls” through. Next, we need to eliminate column 2 of row 6; this entry was zero in
the original matrix but was filled in the first elimination step. Thus, fill-in introduced in the lower
part increases the number of rows whose leading entry must be eliminated in the upper-triangulation
process. The matrix after the second step is shown in Figure 27.3(c). Note that the number of
fill-in continue to increase, and we begin to lose the zero entries between the outer bands of the
outrigger system.

As shown in Figure 27.3(e), by the beginning of the fifth elimination step, the “outrigger”

403

(a) original system A (b) beginning of step 2, Ũ(k = 1) (c) beginning of step 3, Ũ(k = 2)

(d) beginning of step 4, Ũ(k = 3) (e) beginning of step 5, Ũ(k = 4) (f) beginning of step 15, Ũ(k = 14)

Figure 27.3: Illustration of Gaussian elimination applied to a 25 × 25 “outrigger” system. The blue
entries are the entries present in the original system, and the red entries are “fill-in” introduced in
the factorization process. The pivot for each step is marked by a red square.

404

system has largely lost its sparse structure in the leading (mb + 1) × (mb + 1) subblock of the
working submatrix. Thus, for the subsequent n − mb steps of Gaussian elimination, each step

2takes 2mb FLOPs, which is approximately the same number of operations as the densely-populated
banded case. Thus, the total number of operations required for Gaussian elimination of an outrigger
system is approximately 2n(mb + 1)2, the same as the densely-populated banded case. The final
matrix takes the form:

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎠0

0
mb

inside band (of A):

outside band (of A)
no “fill-in”: A, U zero

upper triangular

“fill-in”

Note that the number of nonzero entries is approximately n(mb + 1), which is much larger than
the number of nonzero entries in the original “outrigger” system.

The “outrigger” system, such as the one considered above, naturally arise when a partial differ­
ential equation (PDE) is discretized in two or higher dimensions using a finite difference or finite
element formulation. An example of such a PDE is the heat equation, describing, for example, the
equilibrium temperature of a thermal system shown in Figure 27.4. With a natural ordering of
the degrees of freedom of the discretized system, the bandwidth mb is equal to the number of grid
points in one coordinate direction, and the number of degrees of freedom of the linear system is

2n = mb (i.e. product of the number of grid points in two coordinate directions). In other words, the
1/2bandwidth is the square root of the matrix size, i.e. mb = n . Due to the outrigger structure of

the resulting system, factorizing the system requires approximately n(mb + 1)2 ≈ n2 FLOPs. This
is in contrast to one-dimensional case, which yields a tridiagonal system, which can be solved in
O(n) operations. In fact, in three dimensions, the bandwidth is equal to the product of the number

1/3)2 2/3of grid points in two coordinate directions, i.e. mb = (n = n . The number of operations
required for factorization is n(mb + 1)2 ≈ n7/3 . Thus, the cost of solving a PDE is significantly
higher in three dimensions than in one dimension even if both discretized systems had the same
number of unknowns.1

27.3.2 Back Substitution

Having analyzed the operation count for Gaussian elimination, let us inspect the operation count
for back substitution. First, recall that back substitution is a process of finding the solution of an
upper triangular system, i.e.

step 2: Uu = f̂ → u .

Furthermore, recall that the operation count for back substitution is equal to twice the number
of nonzero entries in U . Because the matrix U is unaltered, we can simply count the number of

1Not unknowns per dimension, but the total number of unknowns.

405

T = 0

A_outrig T = q̇
FD (or FE)

−�2T = q̇

Figure 27.4: Heat equation in two dimensions. Discretization of the equation by finite difference
(FD) or finite element (FE) method yields an “outrigger” system.

nonzero entries in the U that we obtain after Gaussian elimination; there is nothing equivalent to
“fill-in” — modifications to the matrix that increases the number of entries in the matrix and hence
the operation count — in back substitution.

Densely-Populated Banded Systems

For a densely-populated banded system with a bandwidth mb, the number of unknowns in the
factorized matrix U is approximately equal to n(mb + 1). Thus, back substitution requires ap­
proximately 2n(mb + 1) FLOPs. In particular, back substitution for a tridiagonal system (which
yields an upper bidiagonal U) requires approximately 3n FLOPs. A pentadiagonal system requires
approximately 5n FLOPs.

“Outrigger”

As discussed above, a n×n outrigger matrix of bandwidth mb produces an upper triangular matrix
U whose entries between the main diagonal and the outer band are nonzero due to fill-ins. Thus, the
number of nonzeros in U is approximately n(mb +1), and the operation count for back substitution
is approximately 2n(mb + 1). (Note in particular that even if an outrigger system only have five
bands (as in the one shown in Figure 27.3), the number of operations for back substitution is
2n(mb + 1) and not 5n.)

Begin Advanced Material

27.4 Fill-in and Reordering

The previous section focused on the computational cost of solving a linear system governed by
banded sparse matrices. This section introduces a few additional sparse matrices and also discussed
additional concepts on Gaussian elimination for sparse systems.

27.4.1 A Cyclic System

First, let us show that a small change in a physical system — and hence the corresponding linear
system A — can make a large difference in the sparsity pattern of the factored matrix U . Here, we
consider a modified version of n-mass mass-spring system, where the first mass is connected to the
last mass, as shown in Figure 27.5. We will refer to this system as a “cyclic” system, as the springs
form a circle. Recall that a spring-mass system without the extra connection yields a tridiagonal
system. With the extra connection between the first and the last mass, now the (1, n) entry and
(n, 1) entry of the matrix are nonzero as shown in Figure 27.6(a) (for n = 25); clearly, the matrix

406

wall

ff33

uu33

mm

ff44

uu44

mm

ff55

uu55

mm

ff66

uu66

mm

ff11

uu11

ff22

uu22

mm22

kk == 11 kk == 11 kk == 11 kk == 11 kk == 11 kk == 11

kk == 11

mm11

Figure 27.5: “Cyclic” spring-mass system with n = 6 masses.

(a) original matrix A (b) beginning of step 5 (c) final matrix U

Figure 27.6: Illustration of Gaussian elimination applied to a 25 × 25 “arrow” system. The red
entries are “fill-in” introduced in the factorization process. The pivot for each step is marked by a
red square.

is no longer tridiagonal. In fact, if apply our standard classification for banded matrices, the cyclic
matrix would be characterized by its bandwidth of mb = n − 1.

Applying Gaussian elimination to the “cyclic” system, we immediately recognize that the
(1, n) entry of the original matrix “falls” along the last column, creating n − 2 fill-ins (see Fig­
ures 27.6(b) and 27.6(c)). In addition, the original (n, 1) entry also creates a nonzero entry on
the bottom row, which moves across the matrix with the pivot as the matrix is factorized. As a
result, the operation count for the factorization of the “cyclic” system is in fact similar to that of
a pentadiagonal system: approximately 14n FLOPs. Applying back substitution to the factored
matrix — which contains approximately 3n nonzeros — require 5n FLOPs. Thus, solution of the
cyclic system — which has just two more nonzero entries than the tridiagonal system — requires
more than twice the operations (19n vs. 8n). However, it is also important to note that this O(n)
operation count is a significant improvement compared to the O(n(mb + 1)2) = O(n3) operation
estimate based on classifying the system as a standard “outrigger” with a bandwidth mb = n − 1.

We note that the fill-in structure of U takes the form of a skyline defined by the envelope of
the columns of the original matrix A. This is a general principal.

27.4.2 Reordering

In constructing a linear system corresponding to our spring-mass system, we associated the jth entry
of the solution vector — and hence the jth column of the matrix — with the displacement of the jth

mass (counting from the wall) and associated the ith equation with the force equilibrium condition

407

(a) A (natural, nnz(A) = 460) (b) U (natural, nnz(U) = 1009)

(c) A' (AMD, nnz(A') = 460) (d) U ' (AMD, nnz(U ') = 657)

Figure 27.7: Comparison of the sparsity pattern and Gaussian elimination fill-ins for a n = 100
“outrigger” system resulting from natural ordering and an equivalent system using the approximate
minimum degree (AMD) ordering.

of the ith mass. While this is arguably the most “natural” ordering for the spring-mass system,
we could have associated a given column and row of the matrix with a different displacement
and force equilibrium condition, respectively. Note that this “reordering” of the unknowns and
equations of the linear system is equivalent to “swapping” the rows of columns of the matrix, which
is formally known as permutation. Importantly, we can describe the same physical system using
many different orderings of the unknowns and equations; even if the matrices appear different, these
matrices describing the same physical system may be considered equivalent, as they all produce the
same solution for a given right-hand side (given both the solution and right-hand side are reordered
in a consistent manner).

Reordering can make a significant difference in the number of fill-ins and the operation count.
Figure 27.7 shows a comparison of number of fill-ins for an n = 100 linear system arising from two
different orderings of a finite different discretization of two-dimensional heat equation on a 10 × 10
computational grid. An “outrigger” matrix of bandwidth mb = 10 arising from “natural” ordering
is shown in Figure 27.7(a). The matrix has 460 nonzero entries. As discussed in the previous
section, Gaussian elimination of the matrix yields an upper triangular matrix U with approximately

408

n(mb + 1) = 1100 nonzero entries (more precisely 1009 for this particular case), which is shown
in Figure 27.7(b). An equivalent system obtained using the approximate minimum degree (AMD)
ordering is shown in Figure 27.7(c). This newly reordered matrix A ' also has 460 nonzero entries
because permuting (or swapping) rows and columns clearly does not change the number of nonzeros.
On the other hand, application of Gaussian elimination to this reordered matrix yields an upper
triangular matrix U shown in Figure 27.7(d), which has only 657 nonzero entries. Note that the
number of fill-in has been reduced by roughly a factor of two: from 1009 − 280 = 729 for the
“natural” ordering to 657 − 280 = 377 for the AMD ordering. (The original matrix A has 280
nonzero entries in the upper triangular part.)

In general, using an appropriate ordering can significantly reduced the number of fill-ins and
hence the computational cost. In particular, for a sparse matrix arising from n-unknown finite
difference (or finite element) discretization of two-dimensional PDEs, we have noted that “natural” √
ordering produces an “outrigger” system with mb = n; Gaussian elimination of the system yields
an upper triangular matrix with n(mb + 1) ≈ n3/2 nonzero entries. On the other hand, the number
of fill-ins for the same system with an optimal (i.e. minimum fill-in) ordering yields an upper
triangular matrix with O(n log(n)) unknowns. Thus, ordering can have significant impact in both
the operation count and storage for large sparse linear systems.

End Advanced Material

27.5 The Evil Inverse

In solving a linear system Au = f , we advocated a two-step strategy that consists of Gaussian
elimination and back substitution, i.e.

Gaussian elimination: Au = f ⇒ Uu = f̂

Back substitution: Uu = f̂ ⇒ u .

Alternatively, we could find u by explicitly forming the inverse of A, A−1 . Recall that if A is non-
singular (as indicated by, for example, independent columns), there exists a unique matrix A−1

such that

AA−1 = I and A−1A = I.

The inverse matrix A−1 is relevant to solution systems because, in principle, we could

1. Construct A−1;

2. Evaluate u = A−1f (i.e. matrix-vector product).

Note that the second step follows from the fact that

Au = f
A−1Au = A−1f

Iu = A−1f .

While the procedure is mathematically valid, we warn that a linear system should never be solved
by explicitly forming the inverse.

To motivate why explicitly construction of inverse matrices should be avoided, let us study the
sparsity pattern of the inverse matrix for a n-mass spring-mass system, an example of which for
n = 5 is shown in Figure 27.8. We use the column interpretation of the matrix and associate the
column j of A−1 with a vector pj , i.e.

409

wall

ff11 = 00 ff22 = 00 ff33 = 11 ff44 = 00 ff55 = 00

 which ?

not in equilibrium

XX

all displacements nonzero

Figure 27.8: Response of a n = 5 spring-mass system to unit loading on mass 3.

⎞⎛

A−1 =
⎜⎜⎝ p

⎟⎟⎠
1 2 3 . . . np p p

1st column of A−1
nth column of A−1

2nd column of A−1

Since Au = f and u = A−1f , we have (using one-handed matrix-vector product), ⎞⎛⎞⎛ ⎟⎟⎟⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎜⎜⎜⎝

f1

f2

. . .

fn

⎟⎟⎟⎟⎟⎟⎟⎠

u = A−1f =

⎜⎜⎜⎜⎜⎜⎜⎝

p 1 2 3 . . . np p p

= p1f1 + p2f2 + · · · + pnfn .

From this expression, it is clear that the vector pj is equal to the displacements of masses due to
the unit force acting on mass j. In particular the ith entry of pj is the displacement of the ith mass
due to the unit force on the jth mass.

Now, to deduce nonzero pattern of a vector pj , let us focus on the case shown in Figure 27.8;
we will deduce the nonzero entries of p3 for the n = 5 system. Let us consider a sequence of events
that takes place when f3 is applied (we focus on qualitative result rather than quantitative result,
i.e. whether masses move, not by how much):

1. Mass 3 moves to the right due to the unit load f3.

2. Force exerted by the spring connecting mass 3 and 4 increases as the distance between mass
3 and 4 decreases.

3. Mass 4 is no longer in equilibrium as there is a larger force from the left than from the right
(i.e. from the spring connecting mass 3 and 4, which is now compressed, than from the spring
connecting mass 4 and 5, which is neutral).

410

4. Due to the unbalanced force mass 4 moves to the right.

5. The movement of mass 4 to the left triggers a sequence of event that moves mass 5, just as
the movement of mass 3 displaced mass 4. Namely, the force on the spring connecting mass
4 and 5 increases, mass 5 is no longer in equilibrium, and mass 5 moves to the right.

Thus, it is clear that the unit load on mass 3 not only moves mass 3 but also mass 4 and 5 in
Figure 27.8. Using the same qualitative argument, we can convince ourselves that mass 1 and 2
must also move when mass 3 is displaced by the unit load. Thus, in general, the unit load f3

3on mass 3 results in displacing all masses of the system. Recalling that the ith entry of p is the
3displacement of the ith mass due to the unit load f3, we conclude that all entries of p are nonzero.

(In absence of damping, the system excited by the unit load would oscillate and never come to rest;
in a real system, intrinsic damping present in the springs brings the system to a new equilibrium
state.)

Generalization of the above argument to a n-mass system is straightforward. Furthermore,
using the same argument, we conclude that forcing of any of one of the masses results in displacing

1all masses. Consequently, for p , . . . , pn, we have

1u[for f = (1 0 · · · 0)T] = p ← nonzero in all entries!
2u[for f = (0 1 · · · 0)T] = p ← nonzero in all entries!

. . .
nu[for f = (0 0 · · · 0)T] = p ← nonzero in all entries!

Recalling that pj is the jth column of A−1, we conclude that ⎞⎛

A−1 =
⎜⎜⎝ p 1 2p n· · · p

⎟⎟⎠

is full even though (here) A is tridiagonal. In general A−1 does not preserve sparsity of A and is
in fact often full. This is unlike the upper triangular matrix resulting from Gaussian elimination,
which preserves a large number of zeros (modulo the fill-ins).

Figure 27.9 shows the system matrix and its inverse for the n = 10 spring-mass system. The
colors represent the value of each entries; for instance, the A matrix has the typical [−1 2 −1]
pattern, except for the first and last equations. Note that the inverse matrix is not sparse and is
in fact full. In addition, the values of each column of A−1 agrees with our physical intuition about
the displacements to a unit load. For example, when a unit load is applied to mass 3, the distance
between the wall and mass 1 increases by 1 unit, the distance between mass 1 and 2 increases
by 1 unit, and the distance between mass 3 and 2 increases by 1 unit; the distances between the
remaining masses are unaltered because there is no external force acting on the remaining system
at equilibrium (because our system is not clamped on the right end). Accumulating displacements
starting with mass 1, we conclude that mass 1 moves by 1, mass 2 moves by 2 (the sum of the
increased distances between mass 1 and 2 and mass 2 and 3), mass 3 moves by 3, and all the
remaining masses move by 3. This is exactly the information contained in the third column of A−1 ,
which reads [1 2 3 3 . . . 3]T .

In concluding the section, let us analyze the operation count for solving a linear system by
explicitly forming the inverse and performing matrix-vector multiplication. We assume that our
n×n matrix A has a bandwidth of mb. First, we construct the inverse matrix one column at a time

411

(a) A (b) A−1

Figure 27.9: Matrix A for the n = 10 spring-mass system and its inverse A−1 . The colors represent
the value of each entry as specified by the color bar.

by solving for the equilibrium displacements associated with unit load on each mass. To this end, we
first compute the LU factorization of A and then repeat forward/backward substitution. Recalling

2the operation count for a single forward/backward substitution is O(nm), the construction of A−1
b

requires ⎞ ⎛ ⎜⎜⎜⎜⎝

1
0
. . .
0

⎟⎟⎟⎟⎠
Ap1 1 2⇒ p O(nm) FLOPs b=

. . . ⎞ ⎛ ⎜⎜⎜⎜⎝

0
0
. . .
1

⎟⎟⎟⎟⎠
n⇒ p O(nm2

b) FLOPs Apn =

2 2 2for the total work of n · O(nm) ∼ O(n m) FLOPs. Once we formed the inverse matrix, we can b b

solve for the displacement by performing (dense) matrix-vector multiplication, i.e. ⎞⎛⎞⎛⎞⎛
f1 · · · u1 x x x ⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
=

⎜⎜⎜⎜⎝

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠

⎟⎟⎟⎟⎠
O(n · n) = O(n2) FLOPs

.
f2
. . .

· · · u2
. . .

x x x
.

un x x · · · x fn

A−1 (full) one-handed or two-handed

Thus, both the construction of the inverse matrix and the matrix-vector multiplication require
O(n2) operations. In contrast recall that Gaussian elimination and back substitution solves a
sparse linear system in O(n) operations. Thus, a large sparse linear system should never be solved
by explicitly forming its inverse.

412

Chapter 28

Sparse Matrices in Matlab

Throughout this chapter we shall assume that A is an n × n sparse matrix. By “sparse” here we
mean that most of the entries of A are zero. We shall define the number of nonzero entries of A
by nnz(A). Thus, by our assumption on sparsity, nnz(A) is small compared to n2; in fact, in all of
our examples, and indeed in many MechE examples, nnz(A) is typically cn, for a constant c which
is O(1) — say c = 3, or 4, or 10. (We will often consider families of matrices A in which case we
could state more precisely that c is independent of n.)

28.1 The Matrix Vector Product

To illustrate some of the fundamental aspects of computations with sparse matrices we shall consider
the calculation of the matrix vector product, w = Av, for A a given n × n sparse matrix as defined
above and v a given n × 1 vector. (Note that we considering here the simpler forward problem,
in which v is known and w unknown; in a later section we consider the more difficult “inverse”
problem, in which w is known and v is unknown.)

28.1.1 A Mental Model

We first consider a mental model which provides intuition as to how the sparse matrix vector
product is calculated. We then turn to actual Matlab implementation which is different in detail
from the mental model but very similar in concept. There are two aspects to sparse matrices: how
these matrices are stored (efficiently); and how these matrices are manipulated (efficiently). We
first consider storage.

Storage

By definition our matrix A is mostly zeros and hence it would make no sense to store all the entries.
Much better is to just store the nnz(A) nonzero entries with the convention that all other entries
are indeed zero. This can be done by storing the indices of the nonzero entries as well as the values,
as indicated in (28.1).

I(m), J(m), 1 ≤ m ≤ nnz(A) :

indices i = I(m), j = J(m)
O(nnz(A)) storage

for which Aij = 0 . (28.1)
« n2 if sparse

VA(m), 1 ≤ m ≤ nnz(A) :

value of AI(m),J(m)

⎫ ⎪⎪⎪⎪⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎪⎪⎪⎪⎭

413

DRAFT V1.2 © The Authors. License: Creative Commons BY-NC-SA 3.0 .

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Here m is an index associated to each nonzero entry, I(m), J(m) are the indices of the mth nonzero
entry, and VA(m) is the value of A associated with this index, VA(m) ≡ AI(m),J(m). Note that VA
is a vector and not a matrix. It is clear that if A is in fact dense then the scheme (28.1) actually
requires more storage than the conventional non-sparse format since we store values of the indices
as well as the values of the matrix; but for sparse matrices the scheme (28.1) can result in significant
economies.

As a simple example we consider A = I, the n × n identity matrix, for which nnz(A) = n — a
very sparse matrix. Here our sparse storage scheme can be depicted as in (28.2).

x
x

x
x

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m = 1

m

⎫⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m = 1: I(1) = 1, J(1) = 1 VA(1) = 1 ⎪⎪⎪⎪⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎪⎪⎪⎪⎭

m = 2: I(2) = 2, J(2) = 2 VA(2) = 1

. . .

O(n) (« n2) .
storage

x
x m = n : I(n) = 1, J(n) = n VA(n) = 1

m = n
(28.2)

We note that the mapping between the index m and the nonzero entries of A is of course non-
unique; in the above we identify m with the row (or equivalently, column) of the entry on the main
diagonal, but we could equally well number backwards or “randomly.”

Operations

We now consider the sparse matrix-vector product in terms of the storage scheme introduced
above. In particular, we claim that

w = A v
to find given

can be implemented as

w = zeros(n, 1)

for m = 1: nnz(A)

w(I(m)) = w(I(m)) + VA(m) × v(J(m))
AI(m),J(m)

end

We now discuss why this algorithm yields the desired result.
We first note that for any i such that I(m) = i for any m — in other words, a row i of A which is

entirely zero — w(i) should equal zero by the usual row interpretation of the matrix vector product:
w(i) is the inner product between the ith row of A — all zeros — and the vector v, which vanishes

414

6

︸︷︷︸ ︸︷︷︸

6

for any v. ⎞⎛⎞⎛⎞⎛
x

= 0 i → x 0 0 · · · 0 0
⎜⎜⎜⎜⎜⎜⎝

⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎠
. . .

x

⎟⎟⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎠

A v w

On the other hand, for any i such that I(m) = i for some m,

n n

w(i) = Aij vj = Aij vj .
j=1 j = 1

Aij �= 0

In both cases the sparse procedure yields the correct result and furthermore does not perform all
the unnecessary operations associated with elements Aij which are zero and which will clearly not
contribute to the matrix vector product: zero rows of A are never visited; and in rows of A with
nonzero entries only the nonzero columns are visited. We conclude that the operation count is
O(nnz(A)) which is much less than n2 if our matrix is indeed sparse.

We note that we have not necessarily used all possible sparsity since in addition to zeros in A
there may also be zeros in v; we may then not only disregard any row of A which are is zero but
we may also disregard any column k of A for which vk = 0. In practice in most MechE examples
the sparsity in A is much more important to computational efficiency and arises much more often
in actual practice than the sparsity in v, and hence we shall not consider the latter further.

28.1.2 Matlab Implementation

It is important to recognize that sparse is an attribute associated not just with the matrix A in
a linear algebra or mathematical sense but also an attribute in Matlab (or other programming
languages) which indicates a particular data type or class (or, in Matlab , attribute). In situations
in which confusion might occur we shall typically refer to the former simply as sparse and the
latter as “declared” sparse. In general we will realize the computational savings associated with a
mathematically sparse matrix A only if the corresponding Matlab entity, A, is also declared sparse
— it is the latter that correctly invokes the sparse storage and algorithms described in the previous
section. (We recall here that the Matlab implementation of sparse storage and sparse methods is
conceptually similarly to our mental model described above but not identical in terms of details.)

Storage

We proceed by introducing a brief example which illustrates most of the necessary Matlab func­
tionality and syntax. In particular, the script

n = 5;

K = spalloc(n,n,3*n);

K(1,1) = 2;

415

∑ ∑
6

K(1,2) = -1;
for i = 2:n-1

K(i,i) = 2;
K(i,i-1) = -1;
K(i,i+1) = -1;

end
K(n,n) = 1;
K(n,n-1) = -1;

is_K_sparse = issparse(K)

K

num_nonzeros_K = nnz(K)

spy(K)

K_full = full(K)

K_sparse_too = sparse(K_full)

yields the output

is_K_sparse =

1

K =

(1,1) 2
(2,1) -1
(1,2) -1
(2,2) 2
(3,2) -1
(2,3) -1
(3,3) 2
(4,3) -1
(3,4) -1
(4,4) 2
(5,4) -1
(4,5) -1
(5,5) 1

num_nonzeros_K =

13

416

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 28.1: Output of spy(K).

K_full =

2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 1

K_sparse_too =

(1,1) 2
(2,1) -1
(1,2) -1
(2,2) 2
(3,2) -1
(2,3) -1
(3,3) 2
(4,3) -1
(3,4) -1
(4,4) 2
(5,4) -1
(4,5) -1
(5,5) 1

as well as Figure 28.1.
We now explain the different parts in more detail:

First, M = spalloc(n1,n2,k) (i) creates a declared sparse array M of size n1× n2 with allo­
cation for k nonzero matrix entries, and then (ii) initializes the array M to all zeros. (If later
in the script this allocation may be exceeded there is no failure or error, however efficiency
will suffer as memory will not be as contiguously assigned.) In our case here, we anticipate
that K will be tri-diagonal and hence there will be less than 3*n nonzero entries.

Then we assign the elements of K — we create a simple tri-diagonal matrix associated with

417

n = 5 springs in series. Note that although K is declared sparse we do not need to assign
values according to any complicated sparse storage scheme: we assign and more generally
refer to the elements of K with the usual indices, and the sparse storage bookkeeping is
handled by Matlab under the hood.

We can confirm that a matrix M is indeed (declared) sparse with issparse — issparse(M)
returns a logical 1 if M is sparse and a logical 0 if M is not sparse. (In the latter case, we will not
save on memory or operations.) As we discuss below, some Matlab operations may accept
sparse operands but under certain conditions return non-sparse results; it is often important
to confirm with issparse that a matrix which is intended to be sparse is indeed (declared)
sparse.

Now we display K. We observe directly the sparse storage format described in the previous
section: Matlab displays effectively (I(m), J(m), VA(m)) triplets (Matlab does not display
m, which as we indicated is in any event an arbitrary label).

The Matlab built-in function nnz(M) returns the number of nonzero entries in a matrix M.
The Matlab built-in function spy(M) displays the n1 × n2 matrix M as a rectangular grid
with (only) the nonzero entries displayed as blue filled circles — Figure 28.1 displays spy(K).
In short, nnz and spy permit us to quantify the sparsity and structure, respectively, of a
matrix M.

The Matlab built-in functions full and sparse create a full matrix from a (declared) sparse
matrix and a (declared) sparse matrix from a full matrix respectively. Note however, that it
is better to initialize a sparse matrix with spalloc rather than simply create a full matrix
and then invoke sparse; the latter will require at least temporarily (but sometimes fatally)
much more memory than the former.

There are many other sparse Matlab built-in functions for performing various operations.

Operations

This section is very brief: once a matrix A is declared sparse, then the Matlab statement w = A*v
will invoke the efficient sparse matrix vector product described above. In short, the (matrix) mul­
tiplication operator * recognizes that A is a (declared) sparse matrix object and then automatically
invokes the correct/efficient “method” of interpretation and evaluation. Note in the most common
application and in our case most relevant application the matrix A will be declared sparse, the vec­
tor v will be full (i.e., not declared sparse), and the output vector w will be full (i.e., not declared
sparse).1 We emphasize that if the matrix A is mathematically sparse but not declared sparse then
the Matlab * operand will invoke the standard full matrix-vector multiply and we not realize the
potential computational savings.

28.2 Sparse Gaussian Elimination

This section is also very brief. As we already described in Unit III, in order to solve the matrix
system Au = f in Matlab we need only write u = A \ f — the famous backslash operator. We
can now reveal, armed with the material from the current unit, that the backslash operator in fact
performs Gaussian elimination (except for overdetermined systems, in which case the least-squares
problem is solved by a QR algorithm). The backslash will automatically perform partial pivoting

1Note if the vector v is also declared sparse then the result w will be declared sparse as well.

418

— permutations of rows to choose the maximum-magnitude available pivot — to ensure for a non-
singular matrix K that a zero pivot is never encountered and that furthermore amplification of
numerical round-off errors (in finite precision) is minimized.

The sparse case is similarly streamlined. If A is a mathematically sparse matrix and we wish
to solve Au = f by sparse Gaussian elimination as described in the previous chapter, we need only
make sure that A is declared sparse and then write u = A \ f . (As for the matrix vector product,
f need not be declared sparse and the result u will not be sparse.) In this case the backslash
does more than simply eliminate unnecessary calculations with zero operands: the backslash will
permute columns (a reordering) in order to minimize fill-in during the elimination procedure. (As
for the non-sparse case, row permutations will also be pursued, for purposes of numerical stability.)

The case of A SPD is noteworthy. As already indicated, in this case the Gaussian elimination
process is numerically stable without any row permutations. For an SPD matrix, the backslash
operator will thus permute the rows in a similar fashion to the columns; the columns, as before, are
permuted to minimize fill-in, as described in the previous chapter. A particular variant of Gaussian
elimination, the Cholesky factorization, is pursued in the SPD case.

419

MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	V (Numerical) Linear Algebra 2: Solution of Linear Systems
	Motivation
	A Robot Arm
	Gaussian Elimination and Sparsity
	Outline

	Linear Systems
	Model Problem: n=2 Spring-Mass System in Equilibrium
	Description
	SPD Property

	Existence and Uniqueness: n=2
	Problem Statement
	Row View
	The Column View
	A Tale of Two Springs

	A ``Larger'' Spring-Mass System: n Degrees of Freedom
	Existence and Uniqueness: General Case (Square Systems)

	Gaussian Elimination and Back Substitution
	A 2 2 System (n=2)
	A 3 3 System (n=3)
	General n n Systems
	Gaussian Elimination and LU Factorization
	Tridiagonal Systems

	Gaussian Elimination: Sparse Matrices
	Banded Matrices
	Matrix-Vector Multiplications
	Gaussian Elimination and Back Substitution
	Gaussian Elimination
	Densely-Populated Banded Systems
	``Outrigger'' Systems: Fill-Ins

	Back Substitution
	Densely-Populated Banded Systems
	``Outrigger''

	Fill-in and Reordering
	A Cyclic System
	Reordering

	The Evil Inverse

	Sparse Matrices in Matlab
	The Matrix Vector Product
	A Mental Model
	Storage
	Operations

	Matlab Implementation
	Storage
	Operations

	Sparse Gaussian Elimination

